Computer Graphics

Bing-Yu Chen
National Taiwan University

Introduction to OpenGL

Transformations

modified from

Dave Shreiner, Ed Angel, and Vicki Shreiner.

An Interactive Introduction to OpenGL Programming.
ACM SIGGRAPH 2001 Conference Course Notes #54.
& ACM SIGGRAPH 2004 Conference Course Notes #29.

Transformations in OpenGL

Modeling
Viewing

B orient camera
B projection
Animation

Map to screen

Camera Analogy

3D is just like taking a photograph
(lots of photographst!)

viewing
volume

camera ER S

_
model

tripod

Camera Analogy & Transformations

Projection transformations
B adjust the lens of the camera

Viewing transformations

B tripod-define position and orientation of
the viewing volume in the world

Modeling transformations
B moving the model

Viewport transformations

B enlarge or reduce the physical
photograph

Coordinate Systems &
Transformations

Ste
B S
B S

mp

0s in Forming an Image
pecify geometry (world coordinates)

pecify camera (camera coordinates)
roject (window coordinates)

B map to viewport (screen coordinates)

Each step uses transformations
Every transformation is equivalent to

a change In coordinate systems
(frames)

Affine Transformations

Want transformations which preserve
geometry

B lines, polygons, quadrics
Affine = line preserving

B Rotation, translation, scaling
B Projection

B Concatenation (composition)

Homogeneous Coordinates

[l each vertex is a column vector

X

<l
|

y
Z
L W_

[l wis usually 1.0

Ll
Ll

all operations are matrix multiplications

directions (directed line segments) can be
represented with w = 0.0

3D Transformations

A vertex Is transformed by 4 x 4 matrices
B all affine operations are matrix multiplications

B all matrices are stored column-major in OpenGL
B matrices are always post-multiplied

B product of matrix and vector is MV

My m, Mg My,
m, m m m
M=| ° 5 9 13
m, Mg My My
m; m;, my My

Specitying Transformations

Programmer has two styles of

specifying transformations
B specify matrices (glLoadMatrix, glIMultMatrix)
B specify operation (glRotate, glOrtho)

Programmer does not have to

remember the exact matrices
B check appendix of Red Book (Programming Guide)

Programming Transformations

Prior to rendering, view, locate, and
orient:

B eye/camera position
B 3D geometry

Manage the matrices
B including matrix stack

Combine (composite) transformations

DL —» Raster Frag -—i|> FB
1 ’—I> Texture

CPU A

Transformation
Pipeline J[‘

> Pixel
7

object eye clip nogma}lized window
evice
Vv
r.__|Modelview| |Projection | |Perspective | Viewport |
te Matrix Matrix Division Transform
X
Modelview | |Projection | [J other calculations here

B material & color

Modelview B shade model (flat)
B polygon rendering mode

B polygon culling
B clipping

OpenGL Matrices

In OpenGL matrices are part of the state

Three types

B Model-View (GL_MODEL_VIEW)

B Projection (GL PROJECTION)

B Texture (GL_TEXTURE) (ignhore for now)

Single set of functions for manipulation

Select which to manipulated by
B glIMatrixMode(GL_MODEL_VIEW);
B glIMatrixMode(GL_PROJECTION);

Current Transformation Matrix (CTM)

Conceptually there is a 4 x 4 homogeneous

coordinate matrix, the current
transformation matrix (CTM) that is part of
the state and is applied to all vertices that

pass o
The CT

own the pipeline
'M Is defined In the user program and

loadec

vertices

INto a transformation unit

C

p’=Cp
> vertices

CTM operations

[l The CTM can be altered either by loading a new CTM
or by postmutiplication

B [oad an identity matrix: C « 1
B L[oad an arbitrary matrix: C « M

B L|Load a translation matrix: C « T
Load a rotation matrix: C « R
Load a scaling matrix: C « S

Postmultiply by an arbitrary matrix: C « CM
Postmultiply by a translation matrix: C < CT
Postmultiply by a rotation matrix: C « C R
Postmultiply by a scaling matrix: C« C S

Rotation about a Fixed Point

I o YA o ARt o i o e Y

Start with identity matrix: C « |
Move fixed point to origin: C« CT -1
Rotate: C « CR

Move fixed point back: C « CT

Result;: C =T I1RT

Each operation corresponds to one function call
In the program.

Note that the last operation specified is the
first executed in the program.

CTM in OpenGL

OpenGL has a model-view and a
projection matrix in the pipeline
which are concatenated together to
form the CTM

Can manipulate each by first setting
the matrix mode

Vertices Vertices
- Model-view ——®» Projection -~

| |
|
CTM

Matrix Operations

[0 Specify Current Matrix Stack

gIMatrixMode(GL_MODELVIEW or GL PROJECTION)
[l Other Matrix or Stack Operations

glLoadldentity()

glPushMatrix()

glPopMatrix()
[l Viewport

B usually same as window size

B viewport aspect ratio should be same as projection
transformation or resulting image may be distorted

glViewport(x, y, width, height)

Projection Transformation

Shape of viewing frustum

= = = <6
Perspective projection
gluPerspective(fovy, aspect, zNear, zFar)
glFrustum(left, right, bottom, top, zNear, zFar)

Orthographic parallel projection
glOortho(left, right, bottom, top, zNear, zFar)
gluOrtho2D(left, right, bottom, top)

[1 calls glOrtho with z values near zero

Applying
Projection Transformations

Typical use (orthographic projection)
gIMatrixMode(GL PROJECTION);
glLoadldentity();

glOortho(left, right, bottom, top, zNear, zFar);

o
4

Viewing Transformations

Position the camera/eye In the scene
B place the tripod down; aim camera

To “fly through” a scene

B change viewing transformation and
redraw scene

gluLookAt(eyex, eyey, eyez,
aimx, aimy, almz,
upx, upy, upz)

B up vector determines unique orientation

B careful of degenerate positions

tripod

Projection Tutorial

i Frojection [[LIf A~
World-space view

SCreen-space view

Command manipulation window

fovy aspect zNear zFar
gluPerspective(60.0 ,1.00 ,1.0 ,10.0 };
gluLookAt(0.00 ,0.00 ,2.00 , <-eye
0.00 ,000 ,000 , <-center

0.00 ,1.00 ,0.00), <-up

Click on the arguments and move the mouse to modify values.

Modeling Transformations

Move object
glTranslate{fd}(%X, vy, zZz)

Rotate object around arbitrary axis(x y z)
glRotate{fd}(angle, %X, y, Zz)
B angle is in degrees

Dilate (stretch or shrink) or mirror object
glScale{fd}(%X, v, zZz)

Example

Rotation about z axis by 30 degrees with a
fixed point of (1.0, 2.0, 3.0)

glIMatrixMode(GL MODELVIEW);
glLoadldentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, .10);
glTranslatef(-1.0, -2.0, -3.0);

Remember that last matrix specified in the
program is the first applied

Transformation Tutorial

i Transformation A=l

World-space view SCIEEN-SPACE Wiew

Command manipulation window

glTranslatef(0.00 ,0.00 ,0.00);
glRotatef(-52.0, 0.00 , 1.00 , 0.00 J;

glScalef(1.00 , 1.00 ,1.00);

glBegin(...);

Click on the arguments and move the mouse to modify values.

Arbitrary Matrices

Can load and multiply by matrices defined
In the application program

B glLoadMatrixf(m)
B glMultMatrixf(m)

The matrix m is a one dimension array of 16
elements which are the components of the
desired 4 x 4 matrix stored by columns

In glvultMatrixf, m multiplies the existing
matrix on the right

Matrix Stacks

In many situations we want to save
transformation matrices for use later
B Traversing hierarchical data structures

B Avoiding state changes when executing display
lists

OpenGL maintains stacks for each type of

matrix

B Access present type (as set by giMatrixMode) by
O glPushMatrix()
O glPopMatrix()

Reading Back Matrices

Can also access matrices (and other parts
of the state) by enquiry (query) functions
glGetintegerv

glGetFloatv

glGetBooleanv

glGetDoublev

gllsEnabled

For matrices, we use as

B double m[16];
B glGetFloatv(GL MODELVIEW, m);

Connection:
Viewing and Modeling

Moving camera is equivalent to
moving every object in the world
towards a stationary camera

Viewing transformations are
equivalent to several modeling
transformations

B gluLookAt() has its own command

B can make your own
polar view or pilot view

Projection is left handed

Projection transformations
(gluPerspective, glortho)

are left handed
B think of zZNear and zFar as distance

from view point
Everything else is right handed, including
the vertexes to be rendered

y 7+

left handed ‘ i right handed =
X

Z+

Common Transformation Usage

3 examples of resize() routine

B restate projection & viewing
transformations

Usually called when window resized

Registered as callback for
glutReshapeFunc()

resize():
Perspective & LoOKAt

voild resize(Int w, Int h)
{
glViewport(O, O, (GLsizer) w, (GLsizelr) h);
giIMatrixMode(GL _PROJECTION);
glLoadldentity();

gluPerspective(65.0, (GLdouble) w / h,
1.0, 100.0)

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();
gluLookAt(0.0,

0.0, 5.
0.0, 0.0, O.
O 1.0, O.

OO
OOO

B¥

resize():
Perspective & Translate

Same effect as previous LookAt

voild resize(Int w, Int h)
{
glViewport(O, O, (GLsizer) w, (GLsizelr) h);
gIMatrixMode(GL_PROJECTION);
glLoadldentity();
gluPerspective(65.0, (GLdouble) w/h,
1.0, 100.0);
gIMatrixMode(GL MODELVIEW);
glLoadldentity();
glTranslatef(0.0, 0.0, -5.0);

resize():
Ortho (part 1)

voild resize(int width, Int height)
{

GLdouble aspect = (GLdouble) width / height;
GLdouble left = -2.5, right = 2.5;

GLdouble bottom = -2.5, top = 2.5;
glViewport(0, O, (GLsizer) w, (GLsizeil) h);
gIMatrixMode(GL PROJECTION);
glLoadldentity();

... continued ...

resize():
Ortho (part 2)

iIf (aspect < 1.0) {
left /= aspect;
right /= aspect;

} else {
bottom *= aspect;
top *= aspect;

+

glOrtho(left, right, bottom, top, near,
far);

gIMatrixMode(GL_MODELVIEW);
glLoadldentity();

}

Compositing
Modeling Transformations

Problem 1: hierarchical objects
B one position depends upon a previous position
B robot arm or hand; sub-assemblies

Solution 1: moving local coordinate system
B modeling transformations move coordinate system
B post-multiply column-major matrices

B OpenGL post-multiplies matrices

Compositing
Modeling Transformations

Problem 2: objects move relative to

absolute world origin

my object rotates around the wrong origin

[l make it spin around its center or something
else

Solution 2: fixed coordinate system

modeling transformations move objects around
fixed coordinate system

pre-multiply column-major matrices
OpenGL post-multiplies matrices

must reverse order of operations to achieve
desired effect

Additional Clipping Planes

At least 6 more clipping planes
available

Good for cross-sections

Modelview matrix moves clipping
plane Ax+By+Cz+D <0 clipped

glEnable(GL CLIP_PLANE1)
giClipPlane(GL _CLIP_PLANE1, GLdouble* coeff)

Reversing Coordinate Projection

[0 Screen space back to world space

glGetintegerv(GL_VIEWPORT, GLiInt viewport[4])

glGetDoublev(GL MODELVIEW MATRIX,
GLdouble mvmatrlx[16])

glGetDoublev(GL PROJECTION_ MATRIX,
GLdouble prOJmatrlx[16])

gluUnProject(GLdouble winx, winy, winz,
mvmatrix[16], projmatrix[lG],
GLiInt viewport|4],
GLdouble *objx, *objy, *objz)

[0 gluProject goes from world to screen space

Smooth Rotation

[0 From a practical standpoint, we are often want to
use transformations to move and reorient an
object smoothly

B Problem: find a sequence of model-view
matrices M,,M,,.....,M_, so that when they are
applied successively to one or more objects we
see a smooth transition

[J For orientating an object, we can use the fact
that every rotation corresponds to part of a great
circle on a sphere

B Find the axis of rotation and angle
B Virtual trackball

Incremental Rotation

Consider the two approaches

B For a sequence of rotation matrices
R.,R,......R, , find the Euler angles for
each and use R=R;, Ry R;,

Not very efficient

B Use the final positions to determine the

axis and angle of rotation, then
iIncrement only the angle

Quaternions can be more efficient than
either

Quaternions

[0 Extension of imaginary numbers from 2 to 3 dimensions
[0 Requires one real and three imaginary components i, j, k

B g=qg0+gli+g2j+qg3k = [w, v]; w=q0, v=(gql1,92,93)
B where i?=j°=k?’=ijk=-1
B w is called scalar and v is called vector

[l Quaternions can express rotations on sphere smoothly
and efficiently. Process:

B Model-view matrix —» Quaternion
B Carry out operations with Quaternions
B Quaternion — Model-view matrix

Basic Operations Using Quaternions

Addition

B g+qg =[w+w,v+v]

Multiplication

B geqg =[Wew -vVev , vXV +WeV +W ev]
Conjugate

u q* = [W’ _V]

Length

n o gl=(w? e+ V)Y

Norm

B N(@@) = [q]? =w?+ [v]P=wW? + X2 + y? + 22
Inverse

B g'=9g*/|q]*>=9* 7/ N()

Unit Quaternion

B g is a unit quaternion if |q]= 1 and then g'= g*
Identity

® [1, (O, O, 0)] (when involving multiplication)

® [O, (O, 0, 0)] (when involving addition)

L CEE 0 YRR A K4

Angle and Axis & Eular Angles

Angle and Axis
B g = [cos(6/2), sin(6/2) = v]

Eular Angles

B g = Ayaw ® Ypitch ® Yron
O 0o = [cos (y/2), (sin(y/2), 0, 0)]
U duiecn = [cOs (a/2), (O, sin(g/2), 0)]
0 gy, = [cos(tf /2), (O, O, sin(f /2)]

Matrix-to-Quaternion Conversion

MatToQuat (float m[4][4], QUAT * quat) {
float tr, s, q[4];
inti, j, K;
int nxt[3] = {1, 2, 0};
tr = m[O][O] + m[1][1] + m[2][2];
if (tr > 0.0) {
s = sqgrt (tr + 1.0);
quat->w =s / 2.0;
s=0.5/s;
quat->x = (m[1][2] - m[2][1]) * s;
quat->y = (m[2][0] - m[O][2]) * s;
quat->z = (m[O][1] - m[1][O]) * s;
Yelse {
i=0;
if (m[1][1] > m[O][O]) i=1;
if (m[2]1[2] = m[il[D i = 2;

j = nxt[i];

k = nxt[j];

s = sqart ((m[i1[i]1 - (mO10]1 + mIKI[KD) + 1.0);
q[i] =s * 0.5;

if(s!=0.0)s=0.5/7/s;

dl31 = (mO1LK] - mIK1OD * s;
abl = (mL1Gh1 + mO10D > s;
aqlk] = (mLil[K] + m[K][i]) * s;
quat->x = q[O];

quat->y = q[1];

quat->z = q[2];

quat->w = q[3];

Quaternion-to-Matrix Conversion

QuatToMatrix (QUAT * quat, float m[4][4]D) {
float wx, wy, wz, XX, yY, Yz, XY, Xz, 2z, X2, Y2, 22,
X2 = quat-=>x + quat->x; y2 = quat->y + quat->y;,
z2 = quat->z + quat->z;
XX = quat-=>x * x2; Xy = quat-=>x * y2; Xz = quat->x * z2;
yy = quat->y * y2; yz = quat->y * z2; zz = quat-=>z * z2;
WX = quat->w * x2; wy = quat->w * y2; wz = quat->w * z2;
M[O][O0] = 1.0 - (yy + zz); m[1][0] = xy - wz;
m[2][0] = xz + wy; m[3][0] = 0.0;
M[O][1] = xy + wz; m[1][1] = 1.0 - (XX + z2);
m[2][1] = yz - wx; m[3][1] = 0.0;
M[O][2] = xz - wy; m[1][2] = yz + wX;
m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0;
m[O][3] = O; m[1][3] = O;
m[2][3] = O; m[3][3] = 1;

SLERP-Spherical Linear intERPolation

Interpolate between two quaternion rotations
along the shortest arc.

SLERP(p,q,t)= pesin((1-t)=0)+gesin(t=0)
sin(0)

B where cos(0)=w w,+V v,
=Wp W Xp*XqTYp*YqT2p*2q

If two orientations are too close, use linear
Interpolation to avoid any divisions by zero.

	Computer Graphics
	Introduction to OpenGL
	Transformations in OpenGL
	Camera Analogy
	Camera Analogy & Transformations
	Coordinate Systems & Transformations
	Affine Transformations
	Homogeneous Coordinates
	3D Transformations
	Specifying Transformations
	Programming Transformations
	Transformation�Pipeline
	OpenGL Matrices
	Current Transformation Matrix (CTM)
	CTM operations
	Rotation about a Fixed Point
	CTM in OpenGL
	Matrix Operations
	Projection Transformation
	Applying�Projection Transformations
	Viewing Transformations
	Projection Tutorial
	Modeling Transformations
	Example
	Transformation Tutorial
	Arbitrary Matrices
	Matrix Stacks
	Reading Back Matrices
	Connection:�Viewing and Modeling
	Projection is left handed
	Common Transformation Usage
	resize():�Perspective & LookAt
	resize():�Perspective & Translate
	resize():�Ortho (part 1)
	resize():�Ortho (part 2)
	Compositing�Modeling Transformations
	Compositing�Modeling Transformations
	Additional Clipping Planes
	Reversing Coordinate Projection
	Smooth Rotation
	Incremental Rotation
	Quaternions
	Basic Operations Using Quaternions
	Angle and Axis & Eular Angles
	Matrix-to-Quaternion Conversion
	Quaternion-to-Matrix Conversion
	SLERP-Spherical Linear intERPolation

