
Computer Graphics

Bing-Yu Chen
National Taiwan University

Introduction to OpenGL
General OpenGL Introduction
An Example OpenGL Program
Drawing with OpenGL
Transformations
Animation and Depth Buffering
Lighting
Evaluation and NURBS
Texture Mapping
Advanced OpenGL Topics
Imaging modified from

Dave Shreiner, Ed Angel, and Vicki Shreiner.
An Interactive Introduction to OpenGL Programming.
ACM SIGGRAPH 2001 Conference Course Notes #54.

& ACM SIGGRAPH 2004 Conference Course Notes #29.

Transformations in OpenGL

Modeling
Viewing

orient camera
projection

Animation
Map to screen

Camera Analogy

3D is just like taking a photograph
(lots of photographs!)

camera

tripod model

viewing
volume

Camera Analogy & Transformations

Projection transformations
adjust the lens of the camera

Viewing transformations
tripod–define position and orientation of
the viewing volume in the world

Modeling transformations
moving the model

Viewport transformations
enlarge or reduce the physical
photograph

Coordinate Systems &
Transformations

Steps in Forming an Image
specify geometry (world coordinates)
specify camera (camera coordinates)
project (window coordinates)
map to viewport (screen coordinates)

Each step uses transformations
Every transformation is equivalent to
a change in coordinate systems
(frames)

Affine Transformations

Want transformations which preserve
geometry

lines, polygons, quadrics

Affine = line preserving
Rotation, translation, scaling
Projection
Concatenation (composition)

Homogeneous Coordinates
each vertex is a column vector

w is usually 1.0
all operations are matrix multiplications
directions (directed line segments) can be
represented with w = 0.0

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

w
z
y
x

v

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

151173

141062

13951

12840

mmmm
mmmm
mmmm
mmmm

M

v

3D Transformations

M

A vertex is transformed by 4 x 4 matrices
all affine operations are matrix multiplications
all matrices are stored column-major in OpenGL
matrices are always post-multiplied
product of matrix and vector is

Specifying Transformations

Programmer has two styles of
specifying transformations

specify matrices (glLoadMatrix, glMultMatrix)
specify operation (glRotate, glOrtho)

Programmer does not have to
remember the exact matrices

check appendix of Red Book (Programming Guide)

Programming Transformations

Prior to rendering, view, locate, and
orient:

eye/camera position
3D geometry

Manage the matrices
including matrix stack

Combine (composite) transformations

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

object eye clip normalized
device

window

other calculations here
material color
shade model (flat)
polygon rendering mode
polygon culling
clipping

Transformation
Pipeline CPUCPU DLDL

Poly.Poly. Per
Vertex

Per
Vertex

RasterRaster FragFrag FBFB

PixelPixel
TextureTexture

OpenGL Matrices

In OpenGL matrices are part of the state
Three types

Model-View (GL_MODEL_VIEW)
Projection (GL_PROJECTION)
Texture (GL_TEXTURE) (ignore for now)

Single set of functions for manipulation
Select which to manipulated by

glMatrixMode(GL_MODEL_VIEW);
glMatrixMode(GL_PROJECTION);

Current Transformation Matrix (CTM)

Conceptually there is a 4 x 4 homogeneous
coordinate matrix, the current
transformation matrix (CTM) that is part of
the state and is applied to all vertices that
pass down the pipeline
The CTM is defined in the user program and
loaded into a transformation unit

CTM
p p’=Cp

vertices vertices

C

CTM operations
The CTM can be altered either by loading a new CTM
or by postmutiplication

Load an identity matrix: C ← I
Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T
Load a rotation matrix: C ← R
Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM
Postmultiply by a translation matrix: C ← CT
Postmultiply by a rotation matrix: C ← C R
Postmultiply by a scaling matrix: C ← C S

Rotation about a Fixed Point
Start with identity matrix: C ← I
Move fixed point to origin: C ← CT -1
Rotate: C ← CR
Move fixed point back: C ← CT

Result: C = T -1RT

Each operation corresponds to one function call
in the program.
Note that the last operation specified is the
first executed in the program.

CTM in OpenGL

OpenGL has a model-view and a
projection matrix in the pipeline
which are concatenated together to
form the CTM
Can manipulate each by first setting
the matrix mode

Matrix Operations
Specify Current Matrix Stack

glMatrixMode(GL_MODELVIEW or GL_PROJECTION)
Other Matrix or Stack Operations

glLoadIdentity()
glPushMatrix()
glPopMatrix()

Viewport
usually same as window size
viewport aspect ratio should be same as projection
transformation or resulting image may be distorted
glViewport(x, y, width, height)

Projection Transformation

Shape of viewing frustum
Perspective projection
gluPerspective(fovy, aspect, zNear, zFar)
glFrustum(left, right, bottom, top, zNear, zFar)

Orthographic parallel projection
glOrtho(left, right, bottom, top, zNear, zFar)
gluOrtho2D(left, right, bottom, top)

calls glOrtho with z values near zero

Applying
Projection Transformations

Typical use (orthographic projection)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, zNear, zFar);

Viewing Transformations
Position the camera/eye in the scene

place the tripod down; aim camera
To “fly through” a scene

change viewing transformation and
redraw scene

gluLookAt(eyex, eyey, eyez,
aimx, aimy, aimz,
upx, upy, upz)

up vector determines unique orientation
careful of degenerate positions

tripod

Projection Tutorial

Modeling Transformations

Move object
glTranslate{fd}(x, y, z)

Rotate object around arbitrary axis
glRotate{fd}(angle, x, y, z)

angle is in degrees

Dilate (stretch or shrink) or mirror object
glScale{fd}(x, y, z)

()zyx

Example

Rotation about z axis by 30 degrees with a
fixed point of (1.0, 2.0, 3.0)

Remember that last matrix specified in the
program is the first applied

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, .10);
glTranslatef(-1.0, -2.0, -3.0);

Transformation Tutorial

Arbitrary Matrices
Can load and multiply by matrices defined
in the application program

glLoadMatrixf(m)
glMultMatrixf(m)

The matrix m is a one dimension array of 16
elements which are the components of the
desired 4 x 4 matrix stored by columns
In glMultMatrixf, m multiplies the existing
matrix on the right

Matrix Stacks

In many situations we want to save
transformation matrices for use later

Traversing hierarchical data structures
Avoiding state changes when executing display
lists

OpenGL maintains stacks for each type of
matrix

Access present type (as set by glMatrixMode) by
glPushMatrix()
glPopMatrix()

Reading Back Matrices

Can also access matrices (and other parts
of the state) by enquiry (query) functions

glGetIntegerv
glGetFloatv
glGetBooleanv
glGetDoublev
glIsEnabled

For matrices, we use as
double m[16];
glGetFloatv(GL_MODELVIEW, m);

Connection:
Viewing and Modeling

Moving camera is equivalent to
moving every object in the world
towards a stationary camera
Viewing transformations are
equivalent to several modeling
transformations

gluLookAt() has its own command
can make your own
polar view or pilot view

Projection is left handed
Projection transformations
(gluPerspective, glOrtho)
are left handed

think of zNear and zFar as distance
from view point

Everything else is right handed, including
the vertexes to be rendered

x

y z+

left handed
x

y

z+

right handed

Common Transformation Usage

3 examples of resize() routine
restate projection & viewing
transformations

Usually called when window resized
Registered as callback for
glutReshapeFunc()

resize():
Perspective & LookAt
void resize(int w, int h)
{

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(65.0, (GLdouble) w / h,

1.0, 100.0)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 5.0,

0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

}

resize():
Perspective & Translate
Same effect as previous LookAt

void resize(int w, int h)
{

glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(65.0, (GLdouble) w/h,

1.0, 100.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(0.0, 0.0, -5.0);

}

resize():
Ortho (part 1)
void resize(int width, int height)
{

GLdouble aspect = (GLdouble) width / height;
GLdouble left = -2.5, right = 2.5;
GLdouble bottom = -2.5, top = 2.5;
glViewport(0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

… continued …

resize():
Ortho (part 2)

if (aspect < 1.0) {
left /= aspect;
right /= aspect;

} else {
bottom *= aspect;
top *= aspect;

}
glOrtho(left, right, bottom, top, near,
far);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

Compositing
Modeling Transformations

Problem 1: hierarchical objects
one position depends upon a previous position
robot arm or hand; sub-assemblies

Solution 1: moving local coordinate system
modeling transformations move coordinate system
post-multiply column-major matrices
OpenGL post-multiplies matrices

Compositing
Modeling Transformations

Problem 2: objects move relative to
absolute world origin

my object rotates around the wrong origin
make it spin around its center or something
else

Solution 2: fixed coordinate system
modeling transformations move objects around
fixed coordinate system
pre-multiply column-major matrices
OpenGL post-multiplies matrices
must reverse order of operations to achieve
desired effect

Additional Clipping Planes

At least 6 more clipping planes
available
Good for cross-sections
Modelview matrix moves clipping
plane clipped

glEnable(GL_CLIP_PLANEi)
glClipPlane(GL_CLIP_PLANEi, GLdouble* coeff)

0<+++ DCzByAx

Reversing Coordinate Projection
Screen space back to world space

glGetIntegerv(GL_VIEWPORT, GLint viewport[4])
glGetDoublev(GL_MODELVIEW_MATRIX,

GLdouble mvmatrix[16])
glGetDoublev(GL_PROJECTION_MATRIX,

GLdouble projmatrix[16])
gluUnProject(GLdouble winx, winy, winz,

mvmatrix[16], projmatrix[16],
GLint viewport[4],
GLdouble *objx, *objy, *objz)

gluProject goes from world to screen space

Smooth Rotation
From a practical standpoint, we are often want to
use transformations to move and reorient an
object smoothly

Problem: find a sequence of model-view
matrices M0,M1,…..,Mn so that when they are
applied successively to one or more objects we
see a smooth transition

For orientating an object, we can use the fact
that every rotation corresponds to part of a great
circle on a sphere

Find the axis of rotation and angle
Virtual trackball

Incremental Rotation
Consider the two approaches

For a sequence of rotation matrices
R0,R1,…..,Rn , find the Euler angles for
each and use Ri= Riz Riy Rix

Not very efficient
Use the final positions to determine the
axis and angle of rotation, then
increment only the angle

Quaternions can be more efficient than
either

Quaternions
Extension of imaginary numbers from 2 to 3 dimensions
Requires one real and three imaginary components i, j, k

q=q0+q1i+q2j+q3k = [w, v]; w=q0, v=(q1,q2,q3)
where i2=j2=k2=ijk=-1
w is called scalar and v is called vector

Quaternions can express rotations on sphere smoothly
and efficiently. Process:

Model-view matrix → Quaternion
Carry out operations with Quaternions
Quaternion → Model-view matrix

Basic Operations Using Quaternions
Addition

q + q´ = [w + w´, v + v´]
Multiplication

q • q´ = [w • w´ - v • v´, v x v´ + w • v´ + w´ • v]
Conjugate

q* = [w, -v]
Length

|q|=(w2 + |v|2)1/2

Norm
N(q) = |q|2 = w2 + |v|2 = w2 + x2 + y2 + z2

Inverse
q-1 = q* / |q|2 = q* / N(q)

Unit Quaternion
q is a unit quaternion if |q|= 1 and then q-1= q*

Identity
[1, (0, 0, 0)] (when involving multiplication)
[0, (0, 0, 0)] (when involving addition)

Angle and Axis & Eular Angles

Angle and Axis
q = [cos(θ/2), sin(θ/2) • v]

Eular Angles
q = qyaw • qpitch • qroll

qroll = [cos (y/2), (sin(y/2), 0, 0)]
qpitch = [cos (q/2), (0, sin(q/2), 0)]
qyaw = [cos(f /2), (0, 0, sin(f /2)]

Matrix-to-Quaternion Conversion
MatToQuat (float m[4][4], QUAT * quat) {

float tr, s, q[4];
int i, j, k;
int nxt[3] = {1, 2, 0};
tr = m[0][0] + m[1][1] + m[2][2];
if (tr > 0.0) {

s = sqrt (tr + 1.0);
quat->w = s / 2.0;
s = 0.5 / s;
quat->x = (m[1][2] - m[2][1]) * s;
quat->y = (m[2][0] - m[0][2]) * s;
quat->z = (m[0][1] - m[1][0]) * s;

} else {
i = 0;
if (m[1][1] > m[0][0]) i = 1;
if (m[2][2] > m[i][i]) i = 2;
j = nxt[i];
k = nxt[j];
s = sqrt ((m[i][i] - (m[j][j] + m[k][k])) + 1.0);
q[i] = s * 0.5;
if (s != 0.0) s = 0.5 / s;
q[3] = (m[j][k] - m[k][j]) * s;
q[j] = (m[i][j] + m[j][i]) * s;
q[k] = (m[i][k] + m[k][i]) * s;
quat->x = q[0];
quat->y = q[1];
quat->z = q[2];
quat->w = q[3];

}
}

Quaternion-to-Matrix Conversion
QuatToMatrix (QUAT * quat, float m[4][4]) {

float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2;
x2 = quat->x + quat->x; y2 = quat->y + quat->y;
z2 = quat->z + quat->z;
xx = quat->x * x2; xy = quat->x * y2; xz = quat->x * z2;
yy = quat->y * y2; yz = quat->y * z2; zz = quat->z * z2;
wx = quat->w * x2; wy = quat->w * y2; wz = quat->w * z2;
m[0][0] = 1.0 - (yy + zz); m[1][0] = xy - wz;
m[2][0] = xz + wy; m[3][0] = 0.0;
m[0][1] = xy + wz; m[1][1] = 1.0 - (xx + zz);
m[2][1] = yz - wx; m[3][1] = 0.0;
m[0][2] = xz - wy; m[1][2] = yz + wx;
m[2][2] = 1.0 - (xx + yy); m[3][2] = 0.0;
m[0][3] = 0; m[1][3] = 0;
m[2][3] = 0; m[3][3] = 1;

}

SLERP-Spherical Linear intERPolation

Interpolate between two quaternion rotations
along the shortest arc.

SLERP(p,q,t)=

where cos(θ)=wp•wq+vp•vq
=wp•wq+xp•xq+yp•yq+zp•zq

If two orientations are too close, use linear
interpolation to avoid any divisions by zero.

sin(θ)
p•sin((1-t)•θ)+q•sin(t•θ)

	Computer Graphics
	Introduction to OpenGL
	Transformations in OpenGL
	Camera Analogy
	Camera Analogy & Transformations
	Coordinate Systems & Transformations
	Affine Transformations
	Homogeneous Coordinates
	3D Transformations
	Specifying Transformations
	Programming Transformations
	Transformation�Pipeline
	OpenGL Matrices
	Current Transformation Matrix (CTM)
	CTM operations
	Rotation about a Fixed Point
	CTM in OpenGL
	Matrix Operations
	Projection Transformation
	Applying�Projection Transformations
	Viewing Transformations
	Projection Tutorial
	Modeling Transformations
	Example
	Transformation Tutorial
	Arbitrary Matrices
	Matrix Stacks
	Reading Back Matrices
	Connection:�Viewing and Modeling
	Projection is left handed
	Common Transformation Usage
	resize():�Perspective & LookAt
	resize():�Perspective & Translate
	resize():�Ortho (part 1)
	resize():�Ortho (part 2)
	Compositing�Modeling Transformations
	Compositing�Modeling Transformations
	Additional Clipping Planes
	Reversing Coordinate Projection
	Smooth Rotation
	Incremental Rotation
	Quaternions
	Basic Operations Using Quaternions
	Angle and Axis & Eular Angles
	Matrix-to-Quaternion Conversion
	Quaternion-to-Matrix Conversion
	SLERP-Spherical Linear intERPolation

