Computer Organization and Structure

Homework \#3
Due: 2006/11/14

1. Convert $4096_{\text {ten }},-2,047_{\text {ten }}$, and $-2,000,000_{\text {ten }}$ into 32 -bit two's complement binary numbers, respectively, and convert the following two's complement binary numbers to be decimal numbers:
a. $11111111111111111111111100000110_{\text {two }}$;
b. $1111111111111111111111111110{1111_{\mathrm{two}} \text {; }}_{\text {b }}$
c. $01111111111111111111111111101111_{t_{\mathrm{two}}}$.
2. The following MIPS instruction sequence could be used to implement a new instruction that has two register operands. Give the instruction a name and describe what it does. Note that register $\$ \mathbf{t 0}$ is being used as a temporary.

srl	$\$ s 1, \$ s 1,1$	\#
sll	$\$ t 0, \$ s 0,31$	\# These 4 instructions accomplish "new $\$ \mathrm{~s} 0 \$ \mathrm{~s} 1$ "
srl	$\$ \mathrm{~s} 0, \$ \mathrm{~s} 0,1$	\#
or	$\$ \mathrm{~s} 1, \$ \mathrm{~s} 1, \$ \mathrm{t} 0$	\#

3. The ALU supported set on less than (sl t) using just the sign bit of the adder. Let's try a set on less than operation using the values $-7_{\text {ten }}$ and $6_{\text {ten }}$. To make it simpler to follow the example, let's limit the binary representations to 4 bits: $1001_{\text {two }}$ and $0110_{\text {two }}$.
$1001_{\mathrm{two}}-0110_{\mathrm{two}}=1001_{\mathrm{two}}+1010_{\mathrm{two}}=0011_{\mathrm{two}}$
This result would suggest that $-7_{\text {ten }}>6_{\text {ten }}$, which is clearly wrong. Hence we must factor in overflow in the decision. Modify the 1-bit ALU in the following figures to handle slt correctly.

Figure 1: A 1-bit ALU that performs AND, OR, and addition on a and b or b '.

Figure 2: A 1-bit ALU for the most significant bit.
4. Add $2.85_{\text {ten }} \times 10^{3}$ to $9.84_{\text {ten }} \times 10^{4}$ and add $3.63_{\text {ten }} \times 10^{4}$ to $6.87_{\text {ten }} \times 10^{3}$, respectively, assuming that you have only three significant digits, first with guard and round digits and then without them.
5. Given the bit pattern:

10101101000100000000000000000010
what does it represent, assuming that it is
a. a two's complement integer?
b. an unsigned integer?
c. a single precision floating-point number?
d. a MIPS instruction?

