
Computer 
Organization and Structure 

Bing-Yu Chen 
National Taiwan University 



1 

Textbook 

 D. A. Patterson, 
J. L. Hennessy. 
Computer 
Organization & Design: 
The Hardware/Software 
Interface, 4th. ed., 
Morgan Kaufmann, 2011.  



2 

Reference 

 J. L. Hennessy, 
D. A. Patterson. 
Computer Architecture: 
A Quantitative Approach, 
5th. ed., 
Morgan Kaufmann, 2011. 



3 

Reference 

 R. H. Katz, 
G. Borriello. 
Contemporary 
Logic Design, 2nd ed., 
Prentice Hall, 2004. 



4 

Pre-requirements 

 Binary Digital Systems 

 Introduction to Computer 



5 

Requirements 

 Participants 

 Homework 

 maybe five or six times 
with some small programs 

 Examinations 

 twice 



6 

Why and What is the course ? 

 This is the only Computer Hardware related 
course in IM department. 

 

 The contents will cover 

 Logic Design 

 one or two weeks (maybe) 

 Assembly Language 

 two or three weeks (maybe) 

 Computer Architecture 

 the rest weeks 



The Computer Revolution 

 Progress in computer technology 
 Underpinned by Moore’s Law*  

 Makes novel applications feasible 
 Computers in automobiles 

 Cell phones 

 Human genome project 

 World Wide Web 

 Search Engines 

 Computers are pervasive 

*doubling "every 18 months" 7 



Classes of Computers 

 Desktop computers 
 General purpose, variety of software 

 Subject to cost/performance tradeoff 

 Server computers 
 Network based 

 High capacity, performance, reliability 

 Range from small servers to building sized 

 Embedded computers 
 Hidden as components of systems 

 Stringent power/performance/cost constraints 

8 



The Processor Market 

9 



10 

History of Intel® CPU 

 1978 8086 / 8088 5-10 MHz 

 1982 80286  6-25 MHz 

 1985 Intel386™  16-33 MHz 

 1989 Intel486™ DX 25-50 MHz 

 1993 Pentium®  60-233 MHz 

 1997 Pentium® II 233-450 MHz 

 1999 Pentium® III 450M-1.4 GHz 

 2000 Pentium® 4 1.4-3.8 GHz 



Understanding Performance 

 Algorithm 
 Determines number of operations executed 

 Programming language, compiler, 
architecture 
 Determine number of machine instructions 

executed per operation 

 Processor and memory system 
 Determine how fast instructions are executed 

 I/O system (including OS) 
 Determines how fast I/O operations are 

executed 

11 



12 

Below Your Program 

 Application software 

 Written in high-level language 

 System software 

 Compiler: translates HLL code to 
machine code 

 Operating System: service code 

 Handling input/output 

 Managing memory and storage 

 Scheduling tasks & sharing resources 

 Hardware 

 Processor, memory, I/O controllers 



13 

Levels of 
Program Code 

 High-level language 
 Level of abstraction closer 

to problem domain 
 Provides for productivity 

and portability  

 Assembly language 
 Textual representation of 

instructions 

 Hardware representation 
 Binary digits (bits) 
 Encoded instructions 

and data 

swap(int v[],int k) 
{int temp; 
    temp=v[k]; 
    v[k]=v[k+1]; 
    v[k+1]=temp; 
} 

swap: 
    muli $2, $5, 4 
    add  $2, $4, $2 
    lw    $15, 0($2) 
    lw    $16, 4($2) 
    sw   $16, 0($2) 
    sw   $15, 4($2) 
    jr     $31 

00000000101000010000000000011000 
00000000000110000001100000100001 
10001100011000100000000000000000 
10001100111100100000000000000100 
10101100111100100000000000000000 
10101100011000100000000000000100 
00000011111000000000000000001000 

C compiler 

Assembler 

High-level 
language 
program 
(in C) 

Assembly 
language 
program 
(for MIPS) 

Binary machine 
language 
program 
(for MIPS) 



14 

Advantages of High-Level Language 

 It allows the programmer to think in 
a more natural language. 

 It improves programmer productivity. 

 requires fewer lines to express an idea. 

 It allows programs to be independent 
of the computer. 



Components of a Computer 

 Same components for 
all kinds of computer 
 Desktop, server, 

embedded 

 Input/output includes 
 User-interface devices 

 Display, keyboard, 
mouse 

 Storage devices 
 Hard disk, CD/DVD, flash 

 Network adapters 
 For communicating with 

other computers 

15 



Anatomy of a Computer 

network 
cable 

input 
device 

input 
device 

output 
device 

16 



Anatomy of a Mouse 

 Optical mouse 
 LED illuminates 

desktop 

 Small low-res camera 

 Basic image processor 
 Looks for x, y 

movement 

 Buttons & wheel 

 Supersedes roller-ball 
mechanical mouse 

 
17 



Through the Looking Glass 

 LCD screen: picture elements (pixels) 

 Mirrors content of frame buffer memory 

18 



Opening the Box 

19 



Opening the Box 

power supply 

fan 

motherboard 
(main board) 

HDD 

DVD drive 

20 



21 

Motherboard 



Inside the Processor (CPU) 

 Datapath: performs operations on 
data 

 Control: sequences datapath, 
memory, ... 

 Cache memory 

 Small fast SRAM memory for immediate 
access to data 

22 



Inside the Processor 

 AMD Barcelona: 4 processor cores 

23 



Abstractions 

 Abstraction helps us deal with 
complexity 
 Hide lower-level detail 

 Instruction set architecture (ISA) 
 The hardware/software interface 

 Application binary interface 
 The ISA plus system software interface 

 Implementation 
 The details underlying and interface 

24 



A Safe Place for Data 

 Volatile main memory 
 Loses instructions and data when 

power off 

 Non-volatile secondary memory 
 Magnetic disk 
 Flash memory 
 Optical disk (CDROM, DVD) 

25 



Networks 

 Communication and resource sharing 

 Local area network (LAN): Ethernet 

 Within a building 

 Wide area network (WAN): the Internet 

 Wireless network: WiFi, Bluetooth 

26 



27 

Digital Systems 

+5  

V  

–5  

1  0  1  

T  ime  

+5  

V  

–5  

T  ime  

Analog:  
   values vary over 
   a broad range 
   continuously 

Digital:  
   only assumes 
   discrete values 
 



28 

Digital Binary Systems 

 Two discrete values: 

yes on 5 volts 
current 
flowing 

magnetized 
North 

“1” 

no off 0 volts 
no current 
flowing 

magnetized 
South 

“0” 



29 

Advantage of Binary Systems 

 rigorous mathematical foundation 
based on logic 

 

 IF the garage door is open 

 AND the car is running 

 THEN the car can be backed out of 
the garage 



30 

Boolean Algebra & Logical Operators 

 Algebra: variables, values, operations 

 Values: 0 and 1 

 Operations: AND, OR, NOT 

  
0  
0  
1  
1  

X  Y  X    AND  Y  

0  
1  
0  
1  

0  
0  
0  
1  

X  Y  X    OR  Y  

0  
0  
1  
1  

0  
1  
0  
1  

0  
1  
1  
1  

X  NOT  X  

0  
1  

1  
0  



Combinational vs. Sequential 
Logic 

 Combinational logic: without a memory 

 no feedback among inputs and outputs 

 outputs are a pure function of the inputs 

 

 Sequential logic: with a memory 

 inputs and outputs overlap 

 outputs depend on inputs and the entire 
history of execution 

 ex. add in elementary school 

31 



Synchronous vs. Asynchronous 
System 

 Synchronous system 

 period reference signal, the clock, causes 
the storage elements to accept new 
values and to change state 

 

 Asynchronous system 

 no single indication of when to change 
state 

 

32 



Technology Trends 

 Electronics technology continues to 
evolve 
 Increased 

capacity and 
performance 

 Reduced cost 

Year Technology Relative performance/cost 

1951 Vacuum tube 1 

1965 Transistor 35 

1975 Integrated circuit (IC) 900 

1995 Very large scale IC (VLSI) 2,400,000 

2005 Ultra large scale IC 6,200,000,000 

DRAM capacity 

33 



Defining Performance 

 Which airplane has the best performance? 

0 100 200 300 400 500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passenger Capacity

0 2000 4000 6000 8000 10000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Range (miles)

0 500 1000 1500

Douglas

DC-8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Cruising Speed (mph)

0 100000 200000 300000 400000

Douglas DC-

8-50

BAC/Sud

Concorde

Boeing 747

Boeing 777

Passengers x mph 34 



35 

Computer Performance: 
TIME, TIME, TIME 

 Response Time (latency) 

 How long does it take for my job to run ? 

 How long does it take to execute a job ? 

 How long must I wait for the database query ? 

 

 Throughput 

 How many jobs can the machine run at once ? 

 What is the average execution rate ? 

 How much work is getting done ? 
 



Response Time and Throughput 

 Response time 
 How long it takes to do a task 

 Throughput 
 Total work done per unit time 

 e.g., tasks/transactions/… per hour 

 How are response time and throughput 
affected by 
 Replacing the processor with a faster version? 

 Adding more processors? 

 We’ll focus on response time for now… 

36 



Relative Performance 

 Define Performance = 1/Execution Time 

 “X is n time faster than Y” 

 

 

 

 

 Example: time taken to run a program 

 10s on A, 15s on B 

 how much faster is A than B ? 
37 

15
1.5

10


X Y

Y X

Performance / Performance

Execution Time / Execution Time n 



Measuring Execution Time 

 Elapsed time 

 Total response time, including all aspects 

 Processing, I/O, OS overhead, idle time 

 Determines system performance 

 CPU time 

 Time spent processing a given job 

 Discounts I/O time, other jobs’ shares 

 Comprises user CPU time and system CPU time 

 Different programs are affected differently by 
CPU and system performance 

38 



 Operation of digital hardware governed 
by a constant-rate clock 
 
 
 
 
 

 Clock period: duration of a clock cycle 
 e.g., 250ps = 0.25ns = 250×10–12s 

 Clock frequency (rate): cycles per second 
 e.g., 4.0GHz = 4000MHz = 4.0×109Hz 

CPU Clocking 

Clock (cycles) 

Data transfer 
and computation 

Update state 

Clock period 

39 



CPU Time 

 Performance improved by 

 Reducing number of clock cycles 

 Increasing clock rate 

 Hardware designer must often trade off 
clock rate against cycle count 

CPU Time CPU Clock Cycles Clock Cycle Time 

CPU Clock Cycles

Clock Rate

 



40 



CPU Time Example 

 Computer A: 2GHz clock, 10s CPU time 
 Designing Computer B 

 Aim for 6s CPU time 
 Can do faster clock, but causes 1.2 × clock cycles 

 How fast must Computer B clock be? 

B A
B

B

A A A

9

9 9

B

Clock Cycles 1.2 Clock Cycles
Clock Rate

CPU Time 6s

Clock Cycles CPU Time Clock Rate

10s 2GHz 20 10

1.2 20 10 24 10
Clock Rate 4GHz

6s 6s


 

 

   

  
  

41 



Instruction Count and CPI 

 Instruction Count for a program 
 Determined by program, ISA and compiler 

 Average cycles per instruction 
 Determined by CPU hardware 
 If different instructions have different CPI 

 Average CPI affected by instruction mix 

Clock Cycles Instruction Count Cycles per Instruciton 

CPU Time Instruction Count CPI Clock Cycle Time 

Instruction Count CPI

Clock Rate

 

  




42 



CPI Example 

 Computer A: Cycle Time = 250ps, CPI = 2.0 

 Computer B: Cycle Time = 500ps, CPI = 1.2 

 Same ISA 

 Which is faster, and by how much? 

A A A

B B B

B

A

CPU Time Instruction Count CPI Cycle Time

I 2.0 250ps I 500ps

CPU Time Instruction Count CPI Cycle Time

I 1.2 500ps I 600ps

CPU Time I 600ps
1.2

CPU Time I 500ps

  

    

  

    


 



A is faster... 

...by this much 
43 



CPI in More Detail 

 If different instruction classes take 
different numbers of cycles 

 

 

 Weighted average CPI 

 
1

Clock Cycles CPI Instruction Count
n

i i

i

 

1

Instruction CountClock Cycles
CPI CPI

Insturction Count Instruction Count

n
i

i

i

 
   

 


Relative frequency 

44 



CPI Example 

 Alternative compiled code sequences 
using instructions in classes A, B, C 

Class A B C 

CPI for class 1 2 3 

IC in sequence 1 2 1 2 

IC in sequence 2 4 1 1 

 Sequence 1: IC = 5 

 Clock Cycles 
= 2×1 + 1×2 + 2×3 
= 10 

 Avg. CPI = 10/5 = 2.0 

 Sequence 2: IC = 6 

 Clock Cycles 
= 4×1 + 1×2 + 1×3 
= 9 

 Avg. CPI = 9/6 = 1.5 

45 



Performance Summary 

 Performance depends on 
 Algorithm: affects IC, possibly CPI 

 Programming language: affects IC, CPI 

 Compiler: affects IC, CPI 

 Instruction set architecture: affects IC, 
CPI, Tc 

Instructions Colck Cycles Seconds
CPU Time

Program Instruction Colck Cycle
  

46 



MIPS as a Performance Metric 

 MIPS: Millions of Instructions Per Second 
 Doesn’t account for 

 Differences in ISAs between computers 

 Differences in complexity between instructions 

 

 

 

 

 
 CPI varies between programs on a given CPU 

6

6
6

Instruction Count
MIPS

Execution Time 10

Instruction Count Clock Rate

Instruction Count CPI CPI 10
10

Clock Rate




 
 



47 



Amdahl's Law 

 Improving an aspect of a computer and 
expecting a proportional improvement in 
overall performance 

 

 

 Example: multiply accounts for 80s/100s 
 How much improvement in multiply performance 

to get 5× overall? 

 

 

 Corollary: make the common case fast 
48 

affected
improved unaffected

improvement factor

T
T T 

80
20 20

n
  Can’t be done! 



Power Trends 

 

 

 

 

 

 

 In CMOS IC technology 
2Power Capacitive load Voltage Frequency  

x1000 5V1V x30 49 



Reducing Power 

 Suppose a new CPU has 
 85% of capacitive load of old CPU 

 15% voltage and 15% frequency reduction 

 

 

 

 The power wall 
 We can’t reduce voltage further 

 We can’t remove more heat 

 How else can we improve performance? 

 

2
4

2

0.85 ( 0.85) 0.85
0.85 0.52new old old old

old old old old

P C V F

P C V F

    
  

 

50 



Uniprocessor Performance 

Constrained by power, instruction-
level parallelism, memory latency  

51 



Multiprocessors 

 Multicore microprocessors 

 More than one processor per chip 

 Requires explicitly parallel programming 

 Compare with instruction level parallelism 

 Hardware executes multiple instructions at once 

 Hidden from the programmer 

 Hard to do 

 Programming for performance 

 Load balancing 

 Optimizing communication and synchronization 

52 


