
Computer
Organization and Structure

Bing-Yu Chen
National Taiwan University

Instructions:
Language of the Computer

 Operations and Operands
 of the Computer Hardware

 Signed and Unsigned Numbers
 Representing Instructions

 in the Computer

 Logical Operations
 Instructions for Making Decisions
 Supporting Procedures

 in Computer Hardware

 Communicating with People
 MIPS Addressing

 for 32-Bit Immediates and Addresses

 Translating and Starting a Program
 Arrays vs. Pointers

1

Instruction Set

 The repertoire of instructions of a
computer

 Different computers have different
instruction sets
 But with many aspects in common

 Early computers had very simple
instruction sets
 Simplified implementation

 Many modern computers also have
simple instruction sets

2

The MIPS Instruction Set

 Used as the example throughout the
book

 Stanford MIPS commercialized by MIPS
Technologies (www.mips.com)

 Large share of embedded core market
 Applications in consumer electronics,

network/storage equipment, cameras,
printers, …

 Typical of many modern ISAs
 See MIPS Reference Data tear-out card, and

Appendixes B and E
3

http://www.mips.com/

Arithmetic Operations

 Add and Subtract, 3 operands
 2 sources and 1 destination

 operand order is fixed
 destination first

 all arithmetic operations have this form

 Example:
 C code: a = b + c

 MIPS code: add a, b, c

4

Arithmetic Operations

 Design Principle 1:

 simplicity favors regularity

 Regularity makes implementation simpler

 Simplicity enables higher performance at
lower cost

5

Arithmetic Examples

 compiling two C assignments into MIPS
 C code: a = b + c;

d = a - e;

 MIPS code: add a, b, c
sub d, a, e

 compiling a complex C assignment into MIPS
 C code: f = (g + h) – (i + j)

 MIPS code: add $t0, g, h # temp t0 = g + h
add $t1, i, j # temp t1 = i + j
sub f, $t0, $t1 # f = t0 - t1

6

Register Operands

 Of course this complicates some things...

 C code: a = b + c + d;

 MIPS code: add a, b, c
add a, a, d

 where a & b & c & d mean registers

 Arithmetic instructions use register
operands

 operands must be registers

7

8

Register Operands

 MIPS has a 32 × 32-bit register file
 Use for frequently accessed data

 Numbered 0 to 31

 32-bit data called a “word”

 Assembler names
 $t0, $t1, …, $t9 for temporary values

 $s0, $s1, …, $s7 for saved variables

 Design Principle 2:

 smaller is faster

 c.f. main memory: millions of locations

Register Operand Example

 C code: f = (g + h) – (i + j)

 assume f, …, j in $s0, …, $s4

 MIPS code: add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

9

10

Registers vs. Memory

 Arithmetic instructions operands must be
registers
 only 32 registers provided

 Compiler associates variables with registers

 What about programs with lots of variables

processor I/O

Control

Datapath

Input

Output

Memory

Memory Operands

 Main memory used for composite data
 Arrays, structures, dynamic data

 To apply arithmetic operations
 Load values from memory into registers
 Store result from register to memory

 Memory is byte addressed
 Each address identifies an 8-bit byte

 Words are aligned in memory
 Address must be a multiple of 4

 MIPS is Big Endian
 Most-Significant Byte at least address of a word
 c.f. Little Endian: Least-Significant Byte at least

address
11

Big Endian vs. Little Endian

13

A B C D

Data

A

B

C

D

...

a

a+1

a+2

a+3

...

D

C

B

A

...

a

a+1

a+2

a+3

...

Memory

Memory

Big Endianness

Little Endianness

Load & Store Instructions

 C code: g = h + A[8];
 g in $s1, h in $s2, base address of A in $s3

 MIPS code: lw $t0, 32($s3)
add $s1, $s2, $t0

 index 8 requires offset of 32
 4 bytes per word

 can refer to registers by name
(e.g., $s2, $t0) instead of number

16

17

Load & Store Instructions

 C code: A[12] = h + A[8];
 h in $s2, base address of A in $s3

 MIPS code: lw $t0, 32($s3)
add $t0, $s2, $t0
sw $t0, 48($s3)

 store word has destination last
 remember arithmetic operands are registers,

not memory
 can’t write: add 48($s3), $s2, 32($s3)

Registers vs. Memory

 Registers are faster to access than
memory

 Operating on memory data requires
loads and stores
 More instructions to be executed

 Compiler must use registers for
variables as much as possible
 Only spill to memory for less frequently

used variables

 Register optimization is important!

18

Immediate Operands

 Constant data specified in an instruction
 addi $s3, $s3, 4

 No subtract immediate* instruction
 Just use a negative constant

 addi $s2, $s1, -1

 Design Principle 3:
 Make the common case fast

 Small constants are common

 Immediate operand avoids a load instruction

*e.g. subi 20

The Constant Zero

 MIPS register 0 ($zero) is the
constant 0

 Cannot be overwritten

 Useful for common operations

 add $t2, $s1, $zero

 e.g., move between registers

21

Unsigned Binary Integers

 Given an n-bit number

 Range: 0 to +2n – 1

 Example
 0000 0000 0000 0000 0000 0000 0000 10112

= 0 + … + 1×23 + 0×22 +1×21 +1×20

= 0 + … + 8 + 0 + 2 + 1 = 1110

 Using 32 bits
 0 to +4,294,967,295

1 2 1 0

1 2 1 0
2 2 2 2

n n

n n
x x x x x

23

2’s-Complement Signed Integers

 Given an n-bit number

 Range: -2n-1 to +2n-1 – 1

 Example
 1111 1111 1111 1111 1111 1111 1111 11002

= –1×231 + 1×230 + … + 1×22 +0×21 +0×20

= –2,147,483,648 + 2,147,483,644 = –410

 Using 32 bits
 –2,147,483,648 to +2,147,483,647

1 2 1 0

1 2 1 0
2 2 2 2

n n

n n
x x x x x

24

2’s-Complement Signed Integers

 Bit 31 is sign bit
 1 for negative numbers
 0 for non-negative numbers

 –(–2n – 1) can’t be represented
 Non-negative numbers have the same

unsigned and 2’s-complement
representation

 Some specific numbers
 0: 0000 0000 … 0000
 –1: 1111 1111 … 1111
 Most-negative: 1000 0000 … 0000
 Most-positive: 0111 1111 … 1111

25

Signed Negation

 Complement and add 1
 Complement means 1 → 0, 0 → 1

 Example: negate +2
 +2 = 0000 0000 … 00102

 –2 = 1111 1111 … 11012 + 1
= 1111 1111 … 11102

 “negate” and “complement” are quite different!

2
1111...111 1

1

x x

x x

26

Sign Extension

 Representing a number using more bits
 Preserve the numeric value

 In MIPS instruction set
 addi: extend immediate value
 lb, lh: extend loaded byte/halfword
 beq, bne: extend the displacement

 Replicate the sign bit to the left
 c.f. unsigned values: extend with 0s

 Examples: 8-bit to 16-bit
 +2: 0000 0010 => 0000 0000 0000 0010
 –2: 1111 1110 => 1111 1111 1111 1110

27

Representing Instructions

 Instructions are encoded in binary
 Called machine code

 MIPS instructions
 Encoded as 32-bit instruction words
 Small number of formats encoding operation

code (opcode), register numbers, …
 Regularity!

 Register numbers
 $t0 – $t7 are reg’s 8 – 15
 $t8 – $t9 are reg’s 24 – 25
 $s0 – $s7 are reg’s 16 – 23

MIPS instruction encoding@Fig.2.19@P.135
MIPS register conventions@Fig.2.14@P.121

28

29

MIPS R-format Instructions

 op = operation code (opcode)
 basic operation of the instruction

 rs / rt / rd
 register source / destination operand

 shamt = shift amount
 00000 for now

 funct = function code
 extends opcode

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

30

R-format Example

 add $t0, $s1, $s2

 000000100011001001000000001000002

= 0232402016

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

000000 10001 10010 01000 00000 100000

special $s1 $s2 $t0 0 add

0 17 18 8 0 32

Hexadecimal

 Base 16

 Compact representation of bit strings

 4 bits per hex digit

 Example: eca8 6420

 1110 1100 1010 1000 0110 0100 0010 0000

0 0000 4 0100 8 1000 c 1100

1 0001 5 0101 9 1001 d 1101

2 0010 6 0110 a 1010 e 1110

3 0011 7 0111 b 1011 f 1111

31

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

32

MIPS I-format Instructions

 Immediate arithmetic and load/store
instructions
 rs / rt: source or destination register number
 Constant: –215 to +215 – 1
 Address: offset added to base address in rs

 Design Principle 4:
 Good design demands good compromises

 Different formats complicate decoding, but allow 32-
bit instructions uniformly

 Keep formats as similar as possible

33

I-format Example

 lw $t0, 32($s2)

6 bits 5 bits 5 bits 16 bits

op rs rt constant or address

lw $s2 $t0 32

35 18 8 32

100011 10010 01000 0000000000100000

35

C / MIPS / Machine Languages

 C: A[300] = h + A[300]

 MIPS: lw $t0, 1200($t1)
add $t0, $s2, $t0
sw $t0, 1200($t1)

 Machine Language:

0 18 8 8 0 32

35 9 8 1200

43 9 8 1200

Stored Program Concept

 Instructions represented
in binary, just like data

 Instructions and data
stored in memory

 Programs can
operate on
programs
 e.g., compilers, linkers, …

 Binary compatibility allows
compiled programs to
work on different computers
 Standardized ISAs

36memory for data, programs,

compilers, editors, etc.

Processor

Memory

Accounting program
(machine code)

Editor program
(machine code)

C compiler
(machine code)

Payroll data

Book text

C code for
editor program

 Instructions for bitwise manipulation

 Useful for extracting and inserting
groups of bits in a word

Logical Operations

Operation C MIPS

Shift left << sll

Shift right >> srl

Bitwise AND & and, andi

Bitwise OR | or, ori

Bitwise NOT ~ nor

37

39

Shift Operations

 shamt: how many positions to shift

 Shift left logical
 Shift left and fill with 0 bits

 sll by i bits multiplies by 2i

 Shift right logical
 Shift right and fill with 0 bits

 srl by i bits divides by 2i (unsigned only)

op rs rt rd shamt funct

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

40

Shift Operations

 NOTICE

 shift left/right logical is not I-type

 Example: sll $t2, $s0, 4

 Machine Language:

0 0 16 10 4 0

op rs rt rd shamt funct

special none $s0 $t2 4 sll

AND Operations

 Useful to mask bits in a word

 Select some bits, clear others to 0

 and $t0, $t1, $t2
 $t2 = 0000 0000 0000 0000 0000 1101 1100 0000

 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 $t0 = 0000 0000 0000 0000 0000 1100 0000 0000

41

OR Operations

 Useful to include bits in a word

 Set some bits to 1, leave others unchanged

 or $t0, $t1, $t2
 $t2 = 0000 0000 0000 0000 0000 1101 1100 0000

 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 $t0 = 0000 0000 0000 0000 0011 1101 1100 0000

42

NOT Operations

 Useful to invert bits in a word

 Change 0 to 1, and 1 to 0

 MIPS has NOR 3-operand instruction

 a NOR b == NOT (a OR b)

 nor $t0, $t1, $zero
 $t1 = 0000 0000 0000 0000 0011 1100 0000 0000

 $t0 = 1111 1111 1111 1111 1100 0011 1111 1111

43

44

Conditional Operations

 Branch to a labeled instruction if a
condition is true
 Otherwise, continue sequentially

 MIPS conditional branch instructions:
 bne $t0, $t1, Label
 beq $t0, $t1, Label

Example: if (i==j) h = i + j;

bne $s0, $s1, Label
add $s3, $s0, $s1

Label:

45

Unconditional Operations

 MIPS unconditional branch instructions:

 j Label

 (Un-)Conditional Branch Example:

if (i==j) bne $s3, $s4, Else

f=g+h; add $s0, $s1, $s2

else j Exit
f=g-h; Else: sub $s0, $s1, $s2

Exit: ...

 Can you build a simple for / while loop ?

Assembler
calculates
addresses

46

Compiling Loop Statements

C:

while (save [i] == k) i += 1;

 assume i in $s3, k in $s5, address of save in $s6

MIPS:

Loop: sll $t1, $s3, 2 # $t1=4*i

add $t1, $t1, $s6 # $t1=addr. of save[i]

lw $t0, 0($t1) # $t0=save[i]

bne $t0, $s5, Exit # go to Exit if save[i]!=k

addi $s3, $s3, 1 # i+=1

j Loop # go to Loop

Exit:

Basic Blocks

 A basic block is a sequence of
instructions with
 No embedded branches (except at end)

 No branch targets (except at beginning)

 A compiler identifies
basic blocks for optimization

 An advanced processor
can accelerate execution of
basic blocks

47

48

More Conditional Operations

 set on less than:
if ($s3 < $s4) slt $t1, $s3, $s4

$t1=1;
else

$t1=0;

 can use this instruction to build
“blt $s1, $s2, Label”

 can now build general control structures

 NOTE
 the assembler needs a register to do this,
 there are policy of use conventions for registers

$s slti $s

Branch Instruction Design

 Why not blt, bge, etc?

 Hardware for <, ≥, … slower than =, ≠

 Combining with branch involves more work
per instruction, requiring a slower clock

 All instructions penalized!

 beq and bne are the common case

 This is a good design compromise

49

Signed vs. Unsigned

 Signed comparison: slt, slti

 Unsigned comparison: sltu, sltui

 Example
 $s0 = 1111 1111 1111 1111 1111 1111 1111 1111

 $s1 = 0000 0000 0000 0000 0000 0000 0000 0001

 slt $t0, $s0, $s1 # signed

 –1 < +1 $t0 = 1

 sltu $t0, $s0, $s1 # unsigned

 +4,294,967,295 > +1 $t0 = 0

52

Procedure Calling

 Steps required

 Place parameters in registers

 Transfer control to procedure

 Acquire storage for procedure

 Perform procedure’s operations

 Place result in register for caller

 Return to place of call

53

54

Register Usage

Name Register No. Usage

$zero 0 the constant value 0

$v0-$v1 2-3 values for results & expression evaluation

$a0-$a3 4-7 arguments

$t0-$t7 8-15 temporaries (can be overwritten by callee)

$s0-$s7 16-23 saved (must be saved/restored by callee)

$t8-$t9 24-25 more temporaries

$gp 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 return address

Register 1 ($at) reserved for assembler, 26-27 for operating system

Procedure Call Instructions

 Procedure call: jump and link

 jal ProcedureLabel

 Address of following instruction put in $ra

 Jumps to target address

 Procedure return: jump register

 jr $ra

 Copies $ra to program counter

 Can also be used for computed jumps

 e.g., for case/switch statements

55

56

Leaf Procedure Example

int leaf_example (int g, int h, int i, int j) {
int f;

f = (g+h)-(i+j);
return f;

}

 Assume
 Arguments g, …, j in $a0, …, $a3
 f in $s0 (hence, need to save $s0 on stack)
 Result in $v0

57

Leaf Procedure Example

addi $sp, $sp, -4 # adjust stack for saving $s0
sw $s0, 0($sp)
add $t0, $a0, $a1 # g+h
add $t1, $a2, $a3 # i+j
sub $s0, $t0, $t1 # (g+h)-(i+j)
add $v0, $s0, $zero # return f ($v0=$s0+0)
lw $s0, 0($sp)
addi $sp, $sp, 4 # adjust stack again
jr $ra # jump back to calling routine

Non-Leaf Procedures

 Procedures that call other procedures

 For nested call, caller needs to save
on the stack:

 Its return address

 Any arguments and temporaries needed
after the call

 Restore from the stack after the call

59

60

Non-Leaf Procedure Example

int fact (int n) {
if (n < 1)

return 1;
else

return (n * fact (n - 1));
}

 Assume
 Argument n in $a0
 Result in $v0

61

Non-Leaf Procedure Example

fact:
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save the return address
sw $a0, 0($sp) # save the argument n
slti $t0, $a0, 1 # test for n < 1
beq $t0, $zero, L1 # if n >= 1, go to L1
addi $sp, $sp, 8 # pop 2 items off stack
addi $v0, $zero, 1 # return 1
jr $ra # return to after jal

L1: addi $a0, $a0, -1 # n >= 1: argument gets (n - 1)
jal fact # call fact with (n - 1)
lw $a0, 0($sp) # return from jal: restore argument n
lw $ra, 4($sp) # restore the return address
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items
mul $v0, $a0, $v0 # return n * fact (n - 1)
jr $ra # return to the caller

Local Data on the Stack

 Local data allocated by callee
 e.g., C automatic variables

 Procedure frame (activation record)
 Used by some compilers to manage stack storage

62

saved argument
registers (if any)

saved return address

saved saved
registers (if any)

local arrays and
structures (if any)$sp

High address

Low address

$sp

$fp

$fp

Memory Layout

 Text: program code

 Static data: global variables
 e.g., static variables in C, constant

arrays and strings

 $gp initialized to address allowing
±offsets into this segment

 Dynamic data: heap
 E.g., malloc in C

 Stack: automatic storage

Stack

Dynamic data

Static data

Text

$sp7fff fffchex

$gp1000 8000hex
1000 0000hex

$pc0040 0000hex

0
Reserved

63

Character Data

 Byte-encoded character sets

 ASCII: 128 characters

 95 graphic, 33 control

 Latin-1: 256 characters

 ASCII, +96 more graphic characters

 Unicode: 32-bit character set

 Used in C++ wide characters, …

 Most of the world’s alphabets, plus symbols

 UTF-8, UTF-16: variable-length encodings

64

Byte/Halfword Operations

 Could use bitwise operations

 MIPS byte/halfword load/store
 String processing is a common case

 lb rt, offset(rs) lh rt, offset(rs)
 Sign extend to 32 bits in rt

 lbu rt, offset(rs) lhu rt, offset(rs)
 Zero extend to 32 bits in rt

 sb rt, offset(rs) sh rt, offset(rs)
 Store just rightmost byte/halfword

65

66

String Copy Example

void strcpy (char x[], char y []) {
int i;

i = 0;
while (x[i] = y[i] != ‘¥0’) {

i = i + 1;
}

}

 Assume
 Null-terminated string
 Addresses of x, y in $a0, $a1, i in $s0

67

String Copy Example

addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero # i = 0

L1:add $t1, $s0, $a1 # address of y[i] in $t1
lb $t2, 0($t1) # $t2 = y[i]
add $t3, $s0, $a0 # address of x[i] in $t3
sb $t2, 0($t3) # x[i] = y[i]
beq $t2, $zero, L2 # if y[i] == 0, go to L2
addi $s0, $s0, 1 # i = i + 1
j L1 # go to L1

L2:lw $s0, 0($sp) # restore old $s0
addi $sp, $sp, 4
jr $ra

32-bit Constants

 Most constants are small

 16-bit immediate is sufficient

 For the occasional 32-bit constant

 lui rt, constant

 Copies 16-bit constant to left 16 bits of rt

 Clears right 16 bits of rt to 0

lui $s0, 61

ori $s0, $s0, 2304

0000 0000 0000 00000000 0000 0111 1101

0000 1001 0000 00000000 0000 0111 1101

68

Branch Addressing

 Instructions:
 bne $s0,$s1,L1
 beq $s0,$s1,L2

 Formats:

 Most branch targets are near branch
 Forward or backward

 PC-relative addressing
 Target address = PC + offset × 4
 PC already incremented by 4 by this time

69

op rs rt 16 bit numberI

Jump Addressing

 Instructions:
 j L1
 jal L2

 Formats:

 Jump targets could be anywhere in text
segment
 Encode full address in instruction

 (Pseudo)Direct jump addressing
 Target address = PC31…28 : (address × 4)

70

op 26 bit numberJ

71

Target Addressing Example

C:

while (save [i] == k) i += 1;

MIPS:

Loop: sll $t1, $s3, 2

add $t1, $t1, $s6

lw $t0, 0($t1)

bne $t0, $s5, Exit

addi $s3, $s3, 1

j Loop

Exit:

0 9 22 9 0 32

35 9 8 0

2 20000

5 8 21 2

8 19 19 1

0 0 19 9 4 080000

80004

80008

80012

80016

80020

80024 …

Branching Far Away

 If branch target is too far to encode
with 16-bit offset, assembler rewrites
the code

 Example

beq $s0,$s1, L1

↓

bne $s0,$s1, L2
j L1

L2: ...

72

73

Addressing Mode Summary

 Immediate addressing

 Register addressing

op rs rt immediate

op rs rt rd shamt funct

Register

Registers

74

Addressing Mode Summary

 Base addressing

op rs rt address

Register

WordHalfwordByte

Memory

+

75

Addressing Mode Summary

 PC-relative addressing

 Pseudodirect addressing

op rs rt address

PC

Word

Memory

+

op address

PC

Word

Memory

:

76

Decoding Machine Code

 What is the assembly language statement
corresponding to this machine instruction?

 00af8020hex

 0000 0000 1010 1111 1000 0000 0010 0000

 op = 000000 R-format

 rs = 00101 (a1)/ rt = 01111 (t7)/ rd = 10000 (s0)

 shamt = 00000 / funct = 100000 add

 add $s0, $a1, $t7

MIPS instruction encoding@Fig.2.19@P.135
MIPS register conventions@Fig.2.14@P.121

C Sort Example

 Illustrates use of assembly
instructions for a C bubble sort
function

 Swap procedure (leaf)
 void swap(int v[], int k) {

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

 v in $a0, k in $a1, temp in $t0
86

The Procedure Swap

swap: sll $t1, $a1, 2 # $t1=k*4

add $t1, $a0, $t1 # $t1=v+(k*4)

(addr. of v[k])

lw $t0, 0($t1) # $t0=v[k]

lw $t2, 4($t1) # $t2=v[k+1]

sw $t2, 0($t1) # v[k]=$t2

sw $t0, 4($t1) # v[k+1] = $t0

jr $ra # return to
calling routine

87

The Sort Procedure in C

 Non-leaf (calls swap)
 void sort (int v[], int n) {

int i, j;
for (i = 0; i < n; i += 1) {

for (j = i – 1;
j >= 0 && v[j] > v[j + 1];
j -= 1) {

swap(v,j);
}

}
}

 v in $a0, k in $a1, i in $s0, j in $s1
88

The Procedure Body
move $s2, $a0 # save $a0 into $s2
move $s3, $a1 # save $a1 into $s3
move $s0, $zero # i = 0

for1tst: slt $t0, $s0, $s3 # $t0 = 0 if $s0 ≥ $s3 (i ≥ n)
beq $t0, $zero, exit1 # go to exit1 if $s0 ≥ $s3 (i ≥ n)
addi $s1, $s0, –1 # j = i – 1

for2tst: slti $t0, $s1, 0 # $t0 = 1 if $s1 < 0 (j < 0)
bne $t0, $zero, exit2 # go to exit2 if $s1 < 0 (j < 0)
sll $t1, $s1, 2 # $t1 = j * 4
add $t2, $s2, $t1 # $t2 = v + (j * 4)
lw $t3, 0($t2) # $t3 = v[j]
lw $t4, 4($t2) # $t4 = v[j + 1]
slt $t0, $t4, $t3 # $t0 = 0 if $t4 ≥ $t3
beq $t0, $zero, exit2 # go to exit2 if $t4 ≥ $t3
move $a0, $s2 # 1st param of swap is v (old $a0)
move $a1, $s1 # 2nd param of swap is j
jal swap # call swap procedure
addi $s1, $s1, –1 # j –= 1
j for2tst # jump to test of inner loop

exit2: addi $s0, $s0, 1 # i += 1
j for1tst # jump to test of outer loop

exit1: 89

The Full Procedure

sort: addi $sp,$sp, –20 # make room on stack for 5 registers
sw $ra, 16($sp) # save $ra on stack
sw $s3,12($sp) # save $s3 on stack
sw $s2, 8($sp) # save $s2 on stack
sw $s1, 4($sp) # save $s1 on stack
sw $s0, 0($sp) # save $s0 on stack
… # procedure body
…

exit1: lw $s0, 0($sp) # restore $s0 from stack
lw $s1, 4($sp) # restore $s1 from stack
lw $s2, 8($sp) # restore $s2 from stack
lw $s3,12($sp) # restore $s3 from stack
lw $ra,16($sp) # restore $ra from stack
addi $sp,$sp, 20 # restore stack pointer
jr $ra # return to calling routine

90

Arrays vs. Pointers

 Array indexing involves

 Multiplying index by element size

 Adding to array base address

 Pointers correspond directly to
memory addresses

 Can avoid indexing complexity

91

92

Array vs. Pointers in C

void clear1 (int array[], int size) {

int i;

for (i = 0; i < size; i += 1)

array[i] = 0;

}

void clear2 (int *array, int size) {

int *p;

for (p = &array[0]; p < &array[size]; p += 1)

*p = 0;

}

93

Array Version of Clear in MIPS

add $t0, $zero, $zero

loop1: sll $t1, $t0, 2

add $t2, $a0, $t1

sw $zero, 0($t2)

addi $t0, $t0, 1

slt $t3, $t0, $a1

bne $t3, $zero, loop1

94

Pointer Version of Clear in MIPS

add $t0, $a0, $zero

loop2: sw $zero, 0($t0)

addi $t0, $t0, 4

sll $t1, $a1, 2

add $t2, $a0, $t1

slt $t3, $t0, $t2

bne $t3, $zero, loop2

95

New Pointer Version of Clear

add $t0, $a0, $zero

sll $t1, $a1, 2

add $t2, $a0, $t1

loop2: sw $zero, 0($t0)

addi $t0, $t0, 4

slt $t3, $t0, $t2

bne $t3, $zero, loop2

96

Comparing the Two Versions

add $t0, $zero, $zero

lp1: sll $t1, $t0, 2

add $t2, $a0, $t1

sw $zero, 0($t2)

addi $t0, $t0, 1

slt $t3, $t0, $a1

bne $t3, $zero, lp1

add $t0, $a0, $zero

sll $t1, $a1, 2

add $t2, $a0, $t1

lp2: sw $zero, 0($t0)

addi $t0, $t0, 4

slt $t3, $t0, $t2

bne $t3, $zero, lp2

Comparison of Array vs. Pointer

 Multiply “strength reduced” to shift

 Array version requires shift to be inside
loop

 Part of index calculation for incremented i

 c.f. incrementing pointer

 Compiler can achieve same effect as
manual use of pointers

 Induction variable elimination

 Better to make program clearer and safer

97

