Game Programming

Bing-Yu Chen
National Taiwan University
What is Computer Graphics?

Definition

- the pictorial *synthesis* of real or imaginary objects from their computer-based models

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>descriptions</td>
<td>images</td>
</tr>
<tr>
<td>images</td>
<td>Computer Vision</td>
</tr>
<tr>
<td></td>
<td>Image Processing</td>
</tr>
<tr>
<td></td>
<td>Pattern Recognition</td>
</tr>
</tbody>
</table>
What is Computer Graphics?

- Modeling
- Rendering
- Animation
Applications

- Movies
- Interactive entertainment
- Industrial design
- Architecture
- Culture heritage
The Graphics Process

3D Geometric Models

3D Animation Definition

Lighting Information

Texture Information

Rendering

Image Storage & Display
Basic Graphics System

Input devices

Processor

Frame buffer

Memory

Output device

Image formed in FB
Synthetic Camera Model

- View frustrum/view volume
- Objects/models
- Projector
- Lighting
- Image plane/view plane
- Projection of p
- Camera
Elements of Image Formation

- Objects
- Viewer
- Light source(s)

- Attributes that govern how light interacts with the materials in the scene
- Note the independence of the objects, viewer, and light source(s)
Luminance and Color Images

- **Luminance**
 - Monochromatic
 - Values are gray levels
 - Analogous to working with black and white film or television

- **Color**
 - Has perceptual attributes of hue, saturation, and lightness
 - Do we have to match every frequency in visible spectrum? No!
Three-Color Theory

- Human visual system has two types of sensors
 - Rods: monochromatic, night vision
 - Cones
 - Color sensitive
 - Three types of cone
 - Only three values (the tristimulus values) are sent to the brain
- Need only match these three values
 - Need only three primary colors
Additive and Subtractive Color

☐ Additive color
 ■ Form a color by adding amounts of three primaries
 ☐ CRTs, projection systems, positive film
 ■ Primaries are Red (R), Green (G), Blue (B)

☐ Subtractive color
 ■ Form a color by filtering white light with Cyan (C), Magenta (M), and Yellow (Y) filters
 ☐ Light-material interactions
 ☐ Printing
 ☐ Negative film
The RGB Color Model – for CRT

- Black = (0,0,0)
- Red = (1,0,0)
- Green = (0,1,0)
- Yellow = (1,1,0)
- Cyan = (0,1,1)
- Blue = (0,0,1)
- Magenta = (1,0,1)
- White = (1,1,1)
Color Depth

- Can choose number of bits for each of r, g and b
 - More bits per component means more colors can be distinguished, but image files will be larger
 - 8 bits (1 byte) per component: 24-bit color, millions of colors

- If $r = g = b$, color is a shade of gray, so grayscale can be represented by a single value
 - 8 bits permits 256 grays
The CMY Color Model – for hardcopy

Yellow = (1,1,0) Red = (1,0,0)
Green = (0,1,0) Magenta = (1,0,1)
White = (1,1,1) Blue = (0,0,1)
Cyan = (0,1,1) Black = (0,0,0)
Undercolor Removal: CMYK System

- Real inks do not correspond to ideal subtractive primaries
- Combining three inks for black is undesirable
- Printers use *four process colors*, cyan, magenta, yellow and black
- CMYK gamut is not the same as RGB
 - Implications for using images prepared for print (CMYK) on the Web (RGB)
The CMYK Color Model – for hardcopy

- $C = G + B = W - R$
- $M = R + B = W - G$
- $Y = R + G = W - B$
- $K = \min(C, M, Y)$
- $C \leftarrow C - K$
- $M \leftarrow M - K$
- $Y \leftarrow Y - K$
The HSV Color Model – for user-oriented

- Alternative way of specifying color
- *Hue* (roughly, dominant wavelength)
- *Saturation* (purity)
- *Value* (brightness)
- Model HSV as a cylinder: *H* angle, *S* distance from axis, *V* distance along axis
- Basis of popular style of *color picker*
The HSV Color Model – for user-oriented

- H : hue
- S : saturation
- V : value
- (or B for blight)
Pinhole Camera

Use trigonometry to find projection of a point

\[x_p = -\frac{x}{z/d} \quad y_p = -\frac{y}{z/d} \quad z_p = d \]

These are equations of simple perspective
Basics of Rendering

- Pipeline Based Rendering
 - Objects in the scene are rendered in a sequence of steps that form the Rendering Pipeline.

- Ray-Tracing
 - A series of rays are projected thru the view plane and the view plane is colored based on the object that the ray strikes.
Ray Tracing and Geometric Optics

One way to form an image is to follow rays of light from a point source determine which rays enter the lens of the camera. However, each ray of light may have multiple interactions with objects before being absorbed or going to infinity.
Global vs. Local Lighting

- Cannot compute color or shade of each object independently
 - Some objects are blocked from light
 - Light can reflect from object to object
 - Some objects might be translucent
Why not ray tracing?

- Ray tracing seems more physically based so why don’t we use it to design a graphics system?
- Possible and is actually simple for simple objects such as polygons and quadrics with simple point sources
- In principle, can produce global lighting effects such as shadows and multiple reflections but is slow and not well-suited for interactive applications
Pipeline Rendering

Model & Camera Parameters

Transform
Illuminate
Transform
Clip
Project
Rasterize

Rendering Pipeline

Framebuffer

Display
Definitions of Triangle Meshes

\{f_1\} : \{ v_1, v_2, v_3 \} \quad \text{connectivity}
\{f_2\} : \{ v_3, v_2, v_4 \}

\cdots
\{v_1\} : (x,y,z)
\{v_2\} : (x,y,z)

\cdots
\{f_1\} : \text{“skin material”} \quad \text{face attributes}
\{f_2\} : \text{“brown hair”}

\cdots

[Hoppe 99']
Definitions of Triangle Meshes

\[
\begin{align*}
\{f_1\} & : \{ v_1, v_2, v_3 \} \\
\{f_2\} & : \{ v_3, v_2, v_4 \} \\
& \quad \vdots \\
\{v_1\} & : (x,y,z) \\
\{v_2\} & : (x,y,z) \\
& \quad \vdots \\
\{f_1\} & : \text{“skin material”} \\
\{f_2\} & : \text{“brown hair”} \\
& \quad \vdots \\
\{v_2,f_1\} & : (n_x,n_y,n_z) (u,v) \\
\{v_2,f_2\} & : (n_x,n_y,n_z) (u,v) \\
& \quad \vdots
\end{align*}
\]

connectivity

geometry

face attributes

corner attributes

[Hoppe 99’]
Definitions of Triangle Meshes

- vertex
- boundary
- wedge
- face
- corner
- edge

Different normal vectors (corner attributes)
Different material properties (face attributes)
So far, discussion has been in screen space.

But model is stored in model space (a.k.a. object space or world space).

Three sets of geometric transformations:
- Modeling transforms
- Viewing transforms
- Projection transforms
The Rendering Pipeline

- Scene graph
- Object geometry
- Modeling
 Transforms
- Lighting
 Calculations
- Viewing
 Transform
- Clipping
- Projection
 Transform
- Rasterization