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Summary. This paper provides a tutorial and survey of methods for parameterizing
surfaces with a view to applications in geometric modelling and computer graphics.
We gather various concepts from differential geometry which are relevant to surface
mapping and use them to understand the strengths and weaknesses of the many
methods for parameterizing piecewise linear surfaces and their relationship to one
another.

1 Introduction

A parameterization of a surface can be viewed as a one-to-one mapping from
the surface to a suitable domain. In general, the parameter domain itself
will be a surface and so constructing a parameterization means mapping one
surface into another. Typically, surfaces that are homeomorphic to a disk
are mapped into the plane. Usually the surfaces are either represented by or
approximated by triangular meshes and the mappings are piecewise linear.

Parameterizations have many applications in various fields of science and
engineering, including scattered data fitting, reparameterization of spline sur-
faces, and repair of CAD models. But the main driving force in the devel-
opment of the first parameterization methods was the application to texture
mapping which is used in computer graphics to enhance the visual quality of
polygonal models. Later, due to the quickly developing 3D scanning technol-
ogy and the resulting demand for efficient compression methods of increasingly
complex triangulations, other applications such as surface approximation and
remeshing have influenced further developments.

Parameterizations almost always introduce distortion in either angles or
areas and a good mapping in applications is one which minimizes these distor-
tions in some sense. Many different ways of achieving this have been proposed
in the literature.

The purpose of this paper is to give an overview of the main developments
over recent years. Our survey [20] of 2002 attempted to summarize advances
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in this subject up to 2001. However, a large number of papers have appeared
since then and wherever possible we will focus on these more recent advances.
This paper also differs from [20] in that we build up the discussion from some
classical differential geometry and mapping theory. We further discarded the
classification of methods into linear and non-linear ones and rather distinguish
between their differential geometric properties. We believe that this helps to
clarify the strengths and weakness of the many methods and their relationship
to one another.

2 Historical Background

The Greek astronomer Claudius Ptolemy (100–168 A.D.) was the first known
to produce the data for creating a map showing the inhabited world as it
was known to the Greeks and Romans of about 100–150 A.D. In his work
Geography [89] he explains how to project a sphere onto a flat piece of paper
using a system of gridlines—longitude and latitude.

As we know from peeling oranges and trying to flatten the peels on a table,
the sphere cannot be projected onto the plane without distortions and there-
fore certain compromises must be made. Fig. 1 shows some examples. The
orthographic projection (a), which was known to the Egyptians and Greeks
more than 2000 years ago, modifies both angles and areas, but the directions
from the centre of projection are true. Probably the most widely used pro-
jection is the stereographic projection (b) usually attributed to Hipparchus
(190–120 B.C.). It is a conformal projection, i.e., it preserves angles (at the
expense of areas). It also maps circles to circles, no matter how large (great
circles are mapped into straight lines), but a loxodrome is plotted as a spiral. A
loxodrome is a line of constant bearing and of vital importance in navigation.
In 1569, the Flemish cartographer Gerardus Mercator (1512–1594), whose
goal was to produce a map which sailors could use to determine courses [87],
overcame this drawback with his conformal cylindrical Mercator projection (c)
which draws every loxodrome as a straight line. Neither the stereographic nor
the Mercator projections preserve areas however. Johann Heinrich Lambert

(a) (b) (c) (d)

Fig. 1. Orthographic (a), stereographic (b), Mercator (c), and Lambert (d) projec-
tion of the Earth.
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(1728–1777) found the first equiareal projection (d) in 1772 [86], at the cost
of giving up the preservation of angles.

All these projections can be seen as functions that map a part of the surface
of the sphere to a planar domain and the inverse of this mapping is usually
called a parameterization. Many of the principles of parametric surfaces and
differential geometry were developed by Carl Friedrich Gauß (1777–1855),
mostly in [81].

Conformal projections of general surfaces are of special interest due to
their close connection to complex analytic functions, and the Riemann Map-
ping Theorem. This theorem, due to Bernhard Riemann (1826–1866) in his
dissertation [91] of 1851, states that any simply-connected region of the com-
plex plane can be mapped conformally into any other simply-connected region,
such as the unit disk. It implies, similarly, that any disk-like surface can be
mapped conformally into any simply-connected region of the plane.

3 Differential geometry background

We take some basic theory of mappings from Kreyszig [85, Chap. VI]. Suppose
a surface S ⊂ IR3 has the parametric representation

x(u1, u2) = (x1(u
1, u2), x2(u

1, u2), x3(u
1, u2))

for points (u1, u2) in some domain in IR2. We call such a representation regular
if (i) the functions x1, x2, x3 are smooth, i.e., differentiable as many times as
we need for our discussion, and (ii) the vectors

x1 =
∂x

∂u1
, x2 =

∂x

∂u2

are linearly independent at every point (their cross product x1 × x2 is non-
zero).

Many properties of S are characterized by its first fundamental form, which
is the square of the element of arc of a curve in S, the quadratic form

ds2 = x1 · x1 (du1)
2

+ 2x1 · x2 du1du2 + x2 · x2 (du2)
2
.

Writing
gαβ = xα · xβ , α = 1, 2, β = 1, 2,

and arranging the coefficients in a symmetric matrix

I =

(
g11 g12

g12 g22

)

we have

ds2 = (du1 du2) I

(
du1

du2

)
.
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x (u1,u2)
=

(u1¤,u2¤)

x¤

f

S
S¤

Fig. 2. The mapping f from S to S∗ and the parameterization x of S induce the
parameterization x∗ = f ◦ x of S∗.

Often, the matrix I is itself referred to as the first fundamental form. Under
the assumption of regularity, this matrix has a strictly positive determinant

g = det I = g11g22 − g2
12,

the discriminant of the quadratic form. In this case, the form is positive defi-
nite. The coefficients gαβ are the components of a covariant tensor of second
order, called the metric tensor, denoted simply by gαβ .

Suppose now that S is a surface with coordinates (u1, u2) and that f is a
mapping from S to a second surface S∗. Then we can define the parameteri-
zation x∗ = f ◦x of S∗, so that the coordinates of any image point f(p) ∈ S∗

are the same as those of the corresponding pre-image point p ∈ S; see Fig. 2.
We say that the mapping f is allowable if the parameterization x∗ is regular.
With this set up we will now consider various kinds of mappings.

3.1 Isometric mappings

An allowable mapping from S to S∗ is isometric or length-preserving if the
length of any arc on S∗ is the same as that of its pre-image on S. Such a
mapping is called an isometry.

For example, the mapping of a cylinder into the plane that transforms
cylindrical coordinates into cartesian coordinates is isometric.

Theorem 1. An allowable mapping from S to S∗ is isometric if and only if
the coefficients of the first fundamental forms are the same, i.e.,

I = I∗.
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Two surfaces are said to be isometric if there exists an isometry between
them. Isometric surfaces have the same Gaussian curvature at corresponding
pairs of points (since Gaussian curvature depends only on the first fundamen-
tal form).

3.2 Conformal mappings

An allowable mapping from S to S∗ is conformal or angle-preserving if the
angle of intersection of every pair of intersecting arcs on S∗ is the same as
that of the corresponding pre-images on S at the corresponding point.

For example, the stereographic and Mercator projections are conformal
maps from the sphere to the plane; see Fig. 1.

Theorem 2. An allowable mapping from S to S∗ is conformal or angle-
preserving if and only if the coefficients of the first fundamental forms are
proportional, i.e.,

I = η(u1, u2) I∗, (1)

for some scalar function η �= 0.

3.3 Equiareal mappings

An allowable mapping from S to S∗ is equiareal if every part of S is mapped
onto a part of S∗ with the same area.

For example, the Lambert projection is an equiareal mapping from the
sphere to the plane; see Fig. 1.

Theorem 3. An allowable mapping from S to S∗ is equiareal if and only if
the discriminants of the first fundamental forms are equal, i.e.,

g = g∗. (2)

The proofs of the above three results can be found in Kreyszig [85]. It is
then quite easy to see the following (see also Kreyszig):

Theorem 4. Every isometric mapping is conformal and equiareal, and every
conformal and equiareal mapping is isometric, i.e.,

isometric ⇔ conformal + equiareal.

We can thus view an isometric mapping as ideal, in the sense that it
preserves just about everything we could ask for: angles, areas, and lengths.
However, as is well known, isometric mappings only exist in very special cases.
When mapping into the plane, the surface S would have to be developable,
such as a cylinder. Many approaches to surface parameterization therefore
attempt to find a mapping which either

1. is conformal, i.e., has no distortion in angles, or
2. is equiareal, i.e., has no distortion in areas, or
3. minimizes some combination of angle distortion and area distortion.
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3.4 Planar mappings

A special type of mappings that we will consider now and then in the following
are planar mappings f : IR2 → IR2, f(x, y) = (u(x, y), v(x, y)). For these kind
of mappings the first fundamental form can be written as

I = JTJ

where J =
(
ux

vx

uy

vy

)
is the Jacobian of f . It follows that the singular values σ1

and σ2 of J are just the square roots of the eigenvalues λ1 and λ2 of I and it
is then easy to verify

Proposition 1. For a planar mapping f : IR2 → IR2 the following equivalen-
cies hold:

1. f is isometric ⇔ I =
(

1
0

0
1

) ⇔ λ1 = λ2 = 1 ⇔ σ1 = σ2 = 1,

2. f is conformal ⇔ I =
(

η
0

0
η

) ⇔ λ1/λ2 = 1 ⇔ σ1/σ2 = 1,

3. f is equiareal ⇔ det I = 1 ⇔ λ1λ2 = 1 ⇔ σ1σ2 = 1.

4 Conformal and harmonic mappings

Conformal mappings have many nice properties, not least of which is their
connection to complex function theory. Consider for the moment the case
of mappings from a planar region S to the plane. Such a mapping can be
viewed as a function of a complex variable, ω = f(z). Locally, a conformal
map is simply any function f which is analytic in a neighbourhood of a point
z and such that f ′(z) �= 0. A conformal mapping f thus satisfies the Cauchy-
Riemann equations, which, with z = x + iy and ω = u + iv, are

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
. (3)

Now notice that by differentiating one of these equations with respect to x
and the other with respect to y, we obtain the two Laplace equations

Δu = 0, Δv = 0,

where

Δ =
∂2

∂x2
+

∂2

∂y2

is the Laplace operator.
Any mapping (u(x, y), v(x, y)) which satisfies these two Laplace equations

is called a harmonic mapping. Thus a conformal mapping is also harmonic,
and we have the implications

isometric ⇒ conformal ⇒ harmonic.
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f

S
S¤

Fig. 3. One-to-one harmonic mappings.

Why do we consider harmonic maps? Well, their big advantage over confor-
mal maps is the ease with which they can be computed, at least approximately.
After choosing a suitable boundary mapping (which is equivalent to using a
Dirichlet boundary condition for both u and v), each of the functions u and
v is the solution to a linear elliptic partial differential equation (PDE) which
can be approximated by various methods, such as finite elements or finite dif-
ferences, both of which lead to a linear system of equations. Harmonic maps
are also guaranteed to be one-to-one for convex regions. The following result
was conjectured by Radó [90] and proved independently by Kneser [84] and
Choquet [80].

Theorem 5 (RKC). If f : S → IR2 is harmonic and maps the boundary ∂S
homeomorphically into the boundary ∂S∗ of some convex region S∗ ⊂ IR2,
then f is one-to-one; see Fig. 3.

On the downside, harmonic maps are not in general conformal and do not
preserve angles. For example, it is easy to verify from the Cauchy-Riemann
and Laplace equations that the bilinear mapping f : [0, 1]

2 → IR2 defined by

u = x(1 + y), v = y,

is harmonic but not conformal. Indeed the figure below clearly shows that this
harmonic map does not preserve angles.

f

Fig. 4. A harmonic mapping which is not conformal.

Another weakness of harmonic mappings is their “one-sidedness”. The
inverse of a harmonic mapping is not necessarily harmonic. Again, the bilinear
example above provides an example of this. It is easy to check that the inverse
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mapping x = u/(1 + v), y = v is not harmonic as the function x(u, v) does
not satisfy the Laplace equation.

Despite these drawbacks, harmonic mappings do at least minimize defor-
mation in the sense that they minimize the Dirichlet energy

ED(f) =
1

2

∫
S

‖gradf‖2
=

1

2

∫
S

(‖∇u‖2
+ ‖∇v‖2)

.

This property combined with their ease of computation explains their popu-
larity.

When we consider mappings from a general surface S ⊂ IR3 to the plane,
we find that all the above properties of conformal and harmonic mappings
are essentially the same. The equations just become more complicated. Any
mapping f from a given surface S to the plane defines coordinates of S, say
(u1, u2). By Theorem 2, if f is conformal then there is some scalar function
η �= 0 such that

ds2 = η(u1, u2)
(
(du1)

2
+ (du2)

2)
.

Suppose that S has given coordinates (ũ1, ũ2). After some analysis (see
Chap. VI of Kreyszig), one can show that the above equation implies the
two equations

∂u1

∂ũ1
=

g̃11√
g̃

∂u2

∂ũ2
− g̃12√

g̃

∂u2

∂ũ1
,

∂u1

∂ũ2
=

−g̃22√
g̃

∂u2

∂ũ1
+

g̃12√
g̃

∂u2

∂ũ2
, (4)

which are a generalization of the Cauchy-Riemann equations (3). Indeed, in
the special case that S is planar, we can take

g̃11 = g̃22 = 1, g̃12 = 0, (5)

and we get simply
∂u1

∂ũ1
=

∂u2

∂ũ2
,

∂u1

∂ũ2
= −∂u2

∂ũ1
.

Similar to the planar case, we can differentiate one equation in (4) with respect
to ũ1 and the other with respect to ũ2, and obtain the two generalizations of
Laplace’s equation,

ΔSu1 = 0, ΔSu2 = 0, (6)

where ΔS is the Laplace-Beltrami operator

ΔS =
1√
g̃

(
∂

∂ũ1

(
g̃22√

g̃

∂

∂ũ1
− g̃12√

g̃

∂

∂ũ2

)
+

∂

∂ũ2

(
g̃11√

g̃

∂

∂ũ2
− g̃12√

g̃

∂

∂ũ1

))
.

When this operator is differentiated out, one finds that it is a linear elliptic
operator with respect to the coordinates (ũ1, ũ2) (as noted and exploited by
Greiner [82]). The operator generalizes the Laplace operator (as can easily be
checked by taking S to be planar with g̃αβ as in (5)), and is independent of the



Surface Parameterization 9

particular coordinates (in this case (ũ1, ũ2)) used to define it. As explained
by Klingenberg [83], it can also be written simply as

ΔS = divS gradS .

Similar to the planar case, a harmonic map can either be viewed as the solution
to equation (6), or as the minimizer of the Dirichlet energy

ED(f) =
1

2

∫
S

‖gradSf‖2

over the surface S.

5 Equiareal mappings

As we saw in Sec. 3, there are essentially only two quantities to consider
minimizing in a mapping: angle distortion and area distortion.

We know from the Riemann mapping theorem that (surjective) conformal
mappings from a disk-like surface to a fixed planar simply-connected region
not only exist but are also almost unique. For example, consider mapping the
unit disk S into itself (treating S as a subset of the complex plane), and choose
any point z ∈ S and any angle θ, −π < θ ≤ π. According to the theorem,
there is precisely one conformal mapping f : S → S such that f(z) = 0 and
arg f ′(z) = θ. In this sense there are only the three degrees of freedom defined
by the complex number z and the real angle θ in choosing the conformal map.

What we want to do now is to demonstrate that equiareal mappings are
substantially different to conformal ones from the point of view of uniqueness
as there are many more of them. The following example is to our knowledge
novel and nicely illustrates the abundance of equiareal mappings. Consider
again mappings f : S → S, from the unit disk S into itself. Using the polar
coordinates x = r cos θ, y = r sin θ, one easily finds that the determinant of
the Jacobian of any mapping f(x, y) = (u(x, y), v(x, y)) can be expressed as

det J(f) = uxvy − uyvx =
1

r
(urvθ − uθvr).

Consider then the mapping f : S → S defined by

r(cos θ, sin θ) → r
(
cos(θ + φ(r)), sin(θ + φ(r))

)
,

for 0 ≤ r ≤ 1 and −π < θ ≤ π, where φ : [0, 1] → IR is an arbitrary function.
This mapping maps each circle of radius r centred at the origin into itself,
rotated by the angle φ(r); see Fig. 5. If φ is differentiable then so is f and
differentiation shows that

urvθ − uθvr = r,
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f

Fig. 5. An equiareal mapping.

independent of the function φ. We conclude that detJ(f) = 1 and therefore,
according to Proposition 1, f is equiareal, irrespective of the chosen univariate
function φ.

It is not difficult to envisage other families of equiareal mappings con-
structed by rotating circles about other centres in S. These families could
also be combined to make further equiareal mappings.

When we consider again the formulations of conformal and equiareal map-
pings in terms of the first fundamental form, the lack of uniqueness of equiareal
mappings becomes less surprising. For, as we saw earlier, the property of con-
formality (1) essentially places two conditions on the three coefficients of the
first fundamental form g∗

11, g∗12, g∗22, while the property of equiarealness (2)
places only one condition on them (the three conditions together of course
completely determine the three coefficients, giving an isometric mapping).

Considering not only the non-uniqueness, but also the rather strange rota-
tional behaviour of the above mappings, we conclude that it is hardly sensible
to try to minimize area deformation alone. In order to find a well-behaved
mapping we surely need to combine area-preservation with some minimiza-
tion of angular distortion.

6 Discrete harmonic mappings

Common to almost all surface parameterization methods is to approximate
the underlying smooth surface S by a piecewise linear surface ST , in the form
of a triangular mesh, i.e. the union of a set T = {T1, . . . , TM} of triangles Ti

such that the triangles intersect only at common vertices or edges. Nowadays
in fact, surfaces are frequently simply represented as triangular meshes, and
the smooth underlying surface is often not available. We will denote by V the
set of vertices. If ST has a boundary, then the boundary will be polygonal
and we denote by VB the set of vertices lying on the boundary and by VI the
set of interior vertices.

The most important parameterization task is to map a given disk-like
surface S ⊂ IR3 into the plane. Working with a triangular mesh ST , the goal
is to find a suitable (polygonal) domain S∗ ⊂ IR2 and a suitable piecewise
linear mapping f : ST → S∗ that is linear on each triangle Ti in ST and
continuous; see Fig. 6. Such a mapping is uniquely determined by the images
f(v) ∈ IR2 of the vertices v ∈ V .
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Fig. 6. Piecewise linear mapping of a triangular mesh.

6.1 Finite element method

One of the earliest methods for mapping disk-like surfaces into the plane
was to approximate a harmonic map using the finite element method based
on linear elements. This method was introduced to the computer graphics
community by Eck et al. [12] and called simply a discrete harmonic map,
although a similar technique had earlier been used by Pinkall and Polthier for
computing piecewise linear minimal surfaces [56]. The basic method has two
steps.

1. First fix the boundary mapping, i.e. fix f |∂ST = f0, by mapping the
polygonal boundary ∂ST homeomorphically to some polygon in the plane.
This is equivalent to choosing the planar image of each vertex in the mesh
boundary ∂ST and can be done in several ways (see [14] or [33, Sec. 1.2.5]
for details).

2. Find the piecewise linear mapping f : ST → S∗ which minimizes the
Dirichlet energy

ED =
1

2

∫
ST

‖gradST f‖2
,

subject to the Dirichlet boundary condition f |∂ST = f0.

The main advantage of this method over earlier approaches is that this is
a quadratic minimization problem and reduces to solving a linear system of
equations. Consider one triangle T = [v1, v2, v3] in the surface ST . Referring
to Fig. 7, one can show that

2

∫
T

‖gradT f‖2
= cot θ3‖f(v1) − f(v2)‖2

+ cot θ2‖f(v1) − f(v3)‖2
+ cot θ1‖f(v2) − f(v3)‖2

.

The normal equations for the minimization problem can therefore be expressed
as the linear system of equations
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f jT

f(T)
T

v1

v3

v2
f(v1)

f(v3)

f(v2)

μ1

μ3

μ2
®1

®3

®2

Fig. 7. Atomic map between a mesh triangle and the corresponding parameter
triangle.

∑
j∈Ni

wij(f(vj) − f(vi)) = 0, vi ∈ VI , (7)

where
wij = cot αij + cot βij (8)

and the angles αij and βij are shown in the figure below. Here we have assumed
that the vertices in V are indexed (in any random order) and that Ni denotes
the set of indexes of the neighbours of the vertex vi (those vertices which
share an edge with vi).

vj

®ij

vi

¯ij
°ij±ij

Fig. 8. Angles for the discrete harmonic map and the mean value coordinates.

The associated matrix is symmetric and positive definite, and so the linear
system is uniquely solvable. The matrix is also sparse and iterative methods
are effective, e.g., conjugate gradients. Note that the system has to be solved
twice, once for the x- and once for the y-coordinates of the parameter points
f(vi), vi ∈ VI . In practice the method often gives good visual results.

6.2 Convex combination maps

The theory of finite elements [79] provides a well-established convergence the-
ory for finite element approximations to second order elliptic PDE’s. Extrap-
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olating this theory, we can argue that the error incurred when discretizing a
harmonic map f : S → S∗, S∗ ⊂ IR2, from a smooth surface to the plane,
by a discrete harmonic map over some triangular mesh ST of S, will tend to
zero as the mesh size tends to zero (in an appropriate norm and under certain
conditions on the angles of the triangles).

Due to the RKC Theorem 5, it is therefore reasonable to expect that, with
S∗ convex, a discrete harmonic map f : ST → S∗, like its harmonic cousin,
will be one-to-one, i.e., that for every oriented triangle T = [v1, v2, v3] in the
surface ST , the mapped triangle f(T ) = [f(v1), f(v2), f(v3)] would be non-
degenerate and have the same orientation. It turns out that this is guaranteed
to be true if all the weights wij in Equation (7) are positive. To understand
this, note that if we define the normalized weights

λij = wij

/ ∑
k∈Ni

wik,

for each interior vertex vi, we can re-express the system (7) as

f(vi) =
∑
j∈Ni

λijf(vj), vi ∈ VI . (9)

It follows that if all the weights wij are positive then so are the weights λij

and the piecewise linear mapping f demands that each mapped interior vertex
f(vi) will be a convex combination of its neighbours f(vj), and so must lie in
their convex hull. It is reasonable to call any piecewise linear mapping of this
kind a convex combination mapping. The special case in which the weights λij

are uniform, i.e., for each interior vertex vi they are equal to 1/di, where di

is the valency of vertex vi, was called a barycentric mapping by Tutte [92] (in
a more abstract graph-theoretic setting). Each image point f(vi) is forced to
be the barycentre of its neighbours. Tutte showed the following.

Theorem 6 (Tutte). A barycentric mapping of any simple 3-connected pla-
nar graph G is a valid straight line embedding.

It was later observed in [14] that this theorem applies to triangular meshes,
and moreover, that Tutte’s proof could be extended in a simple way to allow
arbitrary positive weights λij in Equation (9) satisfying

∑
j∈Ni

λij = 1. Re-
cently, an independent and simpler proof of this result was given in [19]:

Theorem 7. If f : ST → S∗ is a convex combination mapping which maps
∂ST homeomorphically into a convex polygon ∂S∗, then f is one-to-one.

Recalling the weights of Equation (8), notice from trigonometry that

cot αij + cot βij =
sin(αij + βij)

sin αij sinβij
,

and so
wij > 0 ⇐⇒ αij + βij < π.

Therefore, it follows (see again [19]):
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Proposition 2. A discrete harmonic map f : ST → S∗ is one-to-one if it
maps ∂ST homeomorphically into a convex polygon ∂S∗ and if the sum of
every pair of opposite angles of quadrilaterals in ST is less than π.

Generally speaking, this opposite-angle condition is fulfilled when the tri-
angles are “well-shaped”, and holds in particular when all angles of all trian-
gles in ST are less than π/2.

Conversely, counterexamples have been constructed (a numerical one in
Duchamp et al. [11] and an analytical one in [15]) which show that if the
opposite-angle condition does not hold then the discrete harmonic map may
not be one-to-one: some triangles “flip over”, i.e. have the wrong orientation.

We envisage two possible ways of tackling this problem. The first approach
is to perform some preprocessing operation on the given triangular mesh and
insert new vertices to split triangles and perhaps swap some edges in order to
obtain a new mesh for which the opposite angle condition holds. Of course,
if the mesh is planar, we could simply use the well-known Delaunay swap
criterion, and we would eventually end up with a Delaunay triangulation,
which certainly satisfies the opposite angle condition in every quadrilateral.
However, we do not know of any concrete swapping procedure in the literature
which provides the same guarantee for a general surface mesh. The other
alternative is to design a convex combination map with good properties and
if possible to mimic the behaviour of a harmonic map.

6.3 Mean value coordinates

In addition to injectivity, another natural property that we can expect from a
mapping is to be an isometry whenever possible. It is well-known [83, 85] that
such an isometry exists if and only if the surface S is developable. Piecewise
linear surfaces ST are developable if the angles around each interior vertex
sum up to 2π which rarely is the case, unless ST is planar. We therefore
propose that a good piecewise linear mapping should have the following re-
production property : In the case that the surface mesh ST is planar and its
planar polygonal boundary is mapped affinely into the plane, then the whole
mapping should be the same affine mapping.

Discrete harmonic maps have this reproduction property but are not guar-
anteed to be injective. The shape-preserving method of [14] is a convex combi-
nation mapping (and therefore always one-to-one for convex images), designed
also to have this reproduction property. In many numerical examples, the dis-
crete harmonic map and shape-preserving maps look visually very similar,
especially when the surface is not far from planar. For more complex shapes,
the two methods begin to differ more, with the shape-preserving map being
more robust in the presence of long and thin triangles.

A more recent paper [18] gives an alternative construction of a convex
combination mapping with the reproduction property, which both simplifies
the shape-preserving method of [14] and at the same time directly discretizes
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(a) (b) (c) (d) (e)

Fig. 9. Remeshing a triangle mesh with a regular quadrilateral mesh using different
parameterization methods.

a harmonic map. It is based on mean value coordinates and motivated as ex-
plained below. The numerical results are quite similar to the shape-preserving
parameterization. Fig. 9 shows the result of first mapping a triangle mesh
(a) to a square and then mapping a regular rectangular grid back onto the
mesh. The four mappings used are barycentric (b), discrete harmonic (c),
shape-preserving (d), and mean value (e).

The idea in [18] is the observation that harmonic functions (and therefore
also harmonic maps) satisfy the mean value theorem. At every point in its
(planar) domain, the value of a harmonic function is equal to the average
of its values around any circle centred at that point. This suggests finding a
piecewise linear map f : ST → S∗, for a planar triangular mesh ST , which
satisfies the mean value theorem at every interior vertex vi of the mesh. We
let Γi be a circle centred at vi with radius ri > 0 small enough that Γi only
intersects triangles in T which are incident on vi. We then demand that

f(vi) =
1

2πri

∫
Γi

f(v) ds.

Some algebra then shows that independent of ri > 0 (for ri small enough), the
above equation is the same as Equation (7) but with the weights wij replaced
by

wij =
tan(δij/2) + tan(γij/2)

||vj − vi|| ,

with the angles shown in Fig. 8. When ST is a surface mesh, we simply use
the same weights with the angles δij and γij taken from the mesh triangles.
For a recent in-depth comparison of computational aspects of discrete har-
monic maps and mean value maps, including multilevel solvers, see Aksoylu,
Khodakovsky, and Schröder [1].

Energy minimization

We have seen that mean value maps discretize harmonic maps in a certain
way, but in contrast to discrete harmonic maps they are not the solution
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of a minimization problem. This makes them a bit special because all other
parameterization methods in the literature stem from the minimization of
some energy.

For example, discrete harmonic maps minimize the Dirichlet energy, and
recently Guskov [29] showed that the shape-preserving maps minimize an
energy that is based on second differences. But these are not the only energies
that are minimized by convex combination maps. Greiner and Hormann [25]
showed that any choice of symmetric weights wij = wji in (7) minimizes a
spring energy and Desbrun, Meyer, and Alliez [10] proposed the chi energy
that is minimized if the Wachspress coordinates [93, 94, 88] are taken as wij .

An interesting question for future research is if there also exists a mean-
ingful energy that is minimized by mean value mappings.

6.4 The boundary mapping

The first step in constructing both the discrete harmonic and the convex
combination maps is to choose the boundary mapping f |∂ST . There are two
issues here: (i) choosing the shape of the boundary, and (ii) choosing the
distribution of the points around the boundary.

Choosing the shape

In many applications, it is sufficient (or even desirable) to map to a rectangle
or a triangle, or even a polygonal approximation to a circle. In all these cases,
the boundary is convex and the methods of the previous section work well.

The convexity restriction may, however, generate big distortions near the
boundary when the boundary of the surface ST does not resemble a convex
shape. One practical solution to avoid such distortions is to build a “virtual”
boundary, i.e., to augment the given mesh with extra triangles around the
boundary so as to construct an extended mesh with a “nice” boundary. This
approach has been successfully used by Lee, Kim, and Lee [43], and Kós and
Várady [40].

Choosing the distribution

Consider first the case of a smooth surface S with a smooth boundary ∂S.
Due to the Riemann Mapping Theorem we know that S can be mapped into
any given simply-connected region S∗ ⊂ IR2 by a conformal map f : S → S∗.
Since any such conformal map defines a boundary mapping f |∂S : ∂S → ∂S∗,
this implies (assuming smooth well-behaved boundaries) that there must ex-
ist some boundary mapping such that the harmonic map it defines is also
conformal. Such a boundary mapping seems like an ideal mapping to aim for.
However, to the best of our knowledge it is not known how to find one.

Thus in the case of piecewise linear mappings, the usual procedure in the
literature is to choose some simple boundary mapping such as chord length
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parameterization (for polygons), either around the whole boundary, or along
each side of the boundary when working with triangular or rectangular bound-
aries.

An interesting topic for future research is to search for better ways to
distribute the mapped boundary points around a fixed, chosen boundary (such
as a circle). It seems likely that finding a distribution that maximizes the
conformality of the whole mapping will depend at least on the global shape
of the surface mesh boundary and perhaps on the shape of the surface itself.
As far as we know this issue has not yet been addressed in the literature.

7 Discrete conformal mappings

In all the parameterization methods described in the previous section, the
boundary mapping f |∂ST had to be fixed in advance and preferably map to
a convex polygon. There are, however, several approaches that maximize the
conformality of the piecewise linear mapping without demanding the mesh
boundary to be mapped onto a fixed shape. Instead, these methods allow the
parameter values of the boundary points to be included into the optimization
problem and the shape of the parameter domain is determined by the method.

7.1 Most isometric parameterizations

The method of Hormann and Greiner [34] is based on measuring the confor-
mality of a (non-degenerate) bivariate linear function g : IR2 → IR2 by the
condition number of its Jacobian J with respect to the Frobenius-norm, which
can be expressed in terms of the singular values σ1 and σ2 of J as follows:

EM (g) = κF (J) = ‖J‖F ‖J−1‖F =
√

σ2
1 + σ2

2

√
1/σ2

1 + 1/σ2
2 =

σ1

σ2
+

σ2

σ1
.

According to Proposition 1 this functional clearly is minimal if and only if g
is conformal. Since each atomic map f |T : T → IR2 can be seen as such a
bivariate linear function, the conformality of the piecewise linear mapping f
is then defined as

EM (f) =
∑
T∈T

EM (f |T ). (10)

This energy is bounded from below by twice the number of triangles in T and
this minimum is obtained if and only if f is conformal. Thus, minimizing (10)
gives a parameterization that is as conformal as possible. Note that piecewise
linear functions can only be conformal if the surface ST is developable and
conformality implies isometry in this case. Hence the term “most isometric
parameterizations” (MIPS).

Interestingly, the notion of singular values is also useful to express the
Dirichlet energy of a linear mapping g(x, y) = (u(x, y), v(x, y)). Using the
identity
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σ2
1 + σ2

2 = trace (JTJ) = trace (I) = u2
x + u2

y + v2
x + v2

y (11)

we find for any planar region S that

ED(g) =
1

2

∫
S

‖grad g‖2
=

1

2

∫
S

(‖∇u‖2
+ ‖∇v‖2

) =
1

2
(σ2

1 + σ2
2)A(S),

where A(S) denotes the area of S. Further considering the identity

σ1σ2 = detJ = uxvy − uyvx = A(g(S))/A(S) (12)

reveals a close relation between the MIPS energy of an atomic map and its
Dirichlet energy,

EM (f |T ) = 2
ED(f |T )

A(f(T ))
.

This underlines the conformality property of the MIPS method since it is well
known that ED(f |T ) ≥ A(f(T )) with equality if and only if f is conformal.

It also shows that the MIPS energy in (10) is a sum of quadratic rational
functions in the unknown parameter values f(v) and thus the minimization
is a non-linear problem. As proposed in [36], this problem can be solved in
the following way. Starting from an initial barycentric mapping, each planar
vertex is repeatedly relocated in order to minimize the functional locally there.
During this iteration, each vertex pi = f(vi) in the current planar mesh lies
in the kernel Ki of the star-shaped polygon formed by its neighbours. Since
the MIPS energy is infinite if any mapped triangle f(T ) is degenerate, it is
infinite on the boundary of the kernel Ki. There must therefore be a local
minimum to the local functional somewhere in the interior of Ki. In fact, it
has been shown in [33, Sec. 1.3.2] that the local functional is convex over
the interior of Ki and that the local minimum can be found efficiently using
Newton’s method. By moving pi to this minimum, the method ensures that
the updated planar mesh will not have any folded triangles.

7.2 Angle-based flattening

While the conformality condition used in the previous section is triangle-
based and can be expressed in terms of the parameter values f(v), v ∈ V , the
method of Sheffer and de Sturler [69] minimizes a pointwise criterion that is
formulated in terms of the angles of the parameter triangles.

Let us denote by θi the mesh angles in ST and by αi the corresponding
planar angles in S∗ We further define I(v) as the set of indices of the angles
around a vertex v ∈ V and the sum of these angles, θ(v) =

∑
i∈I(v) θi. For

any interior vertex v ∈ VI , the planar angles αi, i ∈ I(v) sum up to 2π, but
the corresponding mesh angles usually do not. This angular deformation is
inevitable for piecewise linear mappings and the best one can hope for is that
the deformation is distributed evenly around the vertex. Sheffer and de Sturler
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therefore define for each v ∈ V the optimal angles βi = θis(v), i ∈ I(v) with
a uniform scale factor

s(v) =

{
2π/θ(v), v ∈ VI ,
1, v ∈ VB ,

and determine an optimal set of planar angles by minimizing the energy

E(α) =
∑

i

(αi/βi − 1)
2
. (13)

They finally construct the parameter values f(v) and thus the piecewise linear
mapping f itself from the angles αi.

Though the minimization problem is linear in the unknowns αi, it becomes
non-linear as a number of constraints (some of which are non-linear) have to
be taken into account to guarantee the validity of the solution. A simplification
of these constraints as well as a discussion of suitable solvers can be found
in [77]. Like in the previous section, the energy in (13) is bounded from below
and the minimum is obtained if and only if ST is developable with θ(v) = 2π
at all interior vertices and f is conformal with αi = βi = θi for all i.

7.3 Linear methods

Lévy et al. [47] and Desbrun et al. [10] both independently developed a third
method to compute discrete conformal mappings which has the advantage
of being linear. For a bivariate linear function g : IR2 → IR2, Lévy et al.
propose measuring the violation of the Cauchy-Riemann equations (3) in a
least squares sense, i.e., with the conformal energy

EC(g) =
1

2

(
(ux − vy)

2
+ (uy + vx)

2)
.

Based on this they find the optimal piecewise linear mapping f : ST → S∗ by
minimizing

EC(f) =
∑
T∈T

EC(f |T )A(T ).

Like the MIPS energy, EC(g) can be expressed in terms of the singular values
of the Jacobian of g and there is a close relation to the Dirichlet energy. Using
(11) and (12) we find

EC(g) =
1

2
(σ1 − σ2)

2

and
EC(g)A(S) = ED(g) − A(g(S))

for any planar region S. Therefore we have

EC(f) = ED(f) − A(f),
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which also shows that EC(f) is quadratic in the unknowns f(v) and that the
normal equations for the minimization problem can therefore be expressed as
a linear system of equations.

Desbrun et al. take a slightly different path to arrive at the same sys-
tem. They start with the finite element method (see Sec. 6.1) that yields the
equations

Dp ED(f) = 0

for all parameter points p = f(v) of the interior vertices v ∈ VI ; compare (7).
But instead of fixing the boundary f |∂ST , they impose natural boundary con-
straints,

Dp ED(f) = Dp A(f),

for all p = f(v), v ∈ VB. But as they also show that Dp A(f) = 0 at the
interior vertices, this amounts to solving

grad ED = gradA,

and is thus equivalent to minimizing EC(f).
However, as EC(f) is clearly minimized by all degenerate mappings f that

map ST to a single point, additional constraints are needed to find a unique
and non-trivial solution. Both papers therefore propose to fix the parameter
values f(v), f(w) of two vertices v, w ∈ V . The solution depends on this choice.
For example, if we parameterize the pyramid in Fig. 10 (a) whose vertices lie
on the corners of a cube, fixing p1 = f(v1) and p2 = f(v2) gives the solution
in (b), while fixing p1 = f(v1) and p3 = f(v3) results in the parameterization
shown in (c).

v1 v2

v3v4

v5

p1 p2

p5

p3p4

p1 p2

p5

p3p4

(a) (b) (c)

Fig. 10. Example of two different discrete conformal mappings for the same trian-
gulation.

Note that the x- and y-coordinates of the parameter points f(v) are cou-
pled in this approach since the areas of the parameter triangles are involved.
Thus the size of the system to be solved is roughly twice as large as the one
for discrete harmonic maps (see Sec. 6.1).

We further remark that unlike the MIPS and the angle based flattening
methods, this approach may generate folded triangles and that we do not know
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of any sufficient conditions that guarantee the resulting parameterization to
be a one-to-one mapping.

8 Discrete equiareal mappings

In view of the high degree of non-uniqueness of equiareal mappings shown in
Sec. 5, it is not surprising that discrete (piecewise linear) equiareal mappings
are also far from unique and also exhibit strange behaviour. For example, an
obvious attempt at an area-preserving mapping f : ST → S∗, S∗ ⊂ IR2, for a
triangular mesh ST ⊂ IR3 is to fix the polygonal region S∗ to have the same
area as that of ST , and then to find f which minimizes a functional like

E(f) =
∑
T∈T

(
A(f(T )) − A(T )

)2
.

Unlike the discrete Dirichlet energy, this functional is no longer quadratic in
the coordinates of the image points f(v). Not surprisingly, there exist meshes
for which E has several minima, and moreover several mappings f such that
E(f) = 0. Fig. 11 shows an example in which the area A(f(T )) of each image
triangle is equal to the area of the corresponding domain triangle A(T ) and
thus E(f) = 0. In other words, f is a (discrete) equiareal mapping.

Fig. 11. Two planar meshes whose corresponding triangles have the same area.

Other examples of minimizing the functional E and its variants often pro-
duce long and thin triangles. In some cases triangles flip over. Maillot, Yahia,
and Verroust [52] gave a variant of E in which each term in the sum is divided
by A(T ), but few numerical examples are given in their paper. Surazhsky and
Gotsman [76] have found area-equilization useful for other purposes, specifi-
cally for remeshing.

Recently, Degener et al. [9] extended the MIPS method to find parame-
terizations that mediate between angle and area deformation. They measure
the area deformation of a bivariate linear function g by

EA(g) = detJ +
1

det J
= σ1σ2 +

1

σ1σ2
,
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which, according to Proposition 1, clearly is minimal if and only if g is
equiareal. They then minimize the overall energy

E(f) =
∑
T∈T

EM (f |T )EA(f |T )
q
A(T ),

where q ≥ 0 is a parameter that controls the relative importance of the angle
and the area deformation. Note that the case q = 0 corresponds to minimizing
angle deformation alone, but that no value of q gives pure minimization of
areas.

Sander et al. [62] explore methods based on minimizing functionals that
measure the “stretch” of a mapping. These appear to retain some degree of
conformality in addition to reducing area distortion and seem to perform well
in numerical examples. In the notation of Sec. 7.1 they measure the stretch
of a bivariate linear mapping g : IR2 → IR2 by

E2(g) = ‖J‖F =
√

σ2
1 + σ2

2 and E∞(g) = ‖J‖∞ = σ1

and minimize one of the two functionals

E2(f) =

√√√√∑
T∈T A(T )E2(f |−1

T )
2

∑
T∈T A(T )

, E∞(f) = max
T∈T

E∞(f |−1
T ).

Note that both functionals accumulate the stretch of the inverse atomic maps
f |−1

T that map from the parameter to the surface triangle. Sander et al. min-
imize these non-quadratic functionals with an iterative method similar to the
one described in Sec. 7.1. Like the MIPS method, both stretch functionals
always yield a one-to-one mapping. Numerical examples showing comparisons
with discrete harmonic maps are given in [62].

9 Parameterization methods for closed surfaces

9.1 Surfaces with genus zero

There has been a lot of interest in spherical parameterization recently and
in this section we will briefly summarize recent work. Many of the methods
attempt to mimic conformal (or harmonic) maps and are very similar to those
for mapping disk-like surfaces into the plane, although some of the linear
methods now become non-linear.

An important point is that, according to Gu and Yau [27], harmonic maps
from a closed genus zero surface to the unit sphere are conformal, i.e., har-
monic and conformal maps are the same when we deal with (closed) sphere-like
surfaces. Intuitively, this follows from the fact that the domain and image have
no boundary, and it is exactly the boundary map that makes the difference
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between a conformal and a harmonic map in the planar case. According to Gu
and Yau there are essentially only six “degrees of freedom” (the Möbius trans-
formations) in a spherical conformal map, three of which are rotations, the
others involving some kind of area distortion (angles are of course preserved
by definition).

The method of Haker et al. [32] first maps the given sphere-like surface
ST into the plane and then uses stereographic projection (itself a conformal
map) to subsequently map to the sphere. The planar mapping part of this
construction appears to reduce to the usual discrete harmonic map described
in Sec. 6.1. Unfortunately, it is not clear in [32] how the surface is split or
cut to allow for a mapping into the plane and how the boundary condition is
treated.

Gu and Yau [28] have later proposed an iterative method which approxi-
mates a harmonic (and therefore conformal) map and avoids splitting. Specif-
ically, a harmonic map from a closed surface S to the unit sphere S∗ is a map
f : S → S∗ such that at every point p of S, the vector ΔSf(p) ∈ IR3 is per-
pendicular to the tangent plane of S∗ at f(p). In the discrete case we consider
piecewise linear mappings f : ST → IR3 over an approximative mesh ST with
the property that f(v) lies on the unit sphere S∗ for every vertex v ∈ V of
the mesh ST . Gu and Yau propose approximating a harmonic (conformal)
map in the following way. Let Πvi

(u) denote the perpendicular projection of
any point u on the sphere S∗ onto the tangent plane of S∗ at vi. Then they
consider a map which solves the (non-linear) equations

∑
j∈Ni

wij

(
Πvi

(f(vj)) − f(vi)
)

= 0, vi ∈ V,

where, as in the planar case (7), the coefficients wij are the weights of (8).
Gu and Yau [28] give many nice numerical examples based on their method.
However, numerical difficulties apparently arise when some of the weights wij

are negative, and they propose editing the original surface mesh, so that all
weights are positive, though no procedure for doing this is given.

One might expect that a piecewise linear map should be one-to-one if all
the weights are positive. Gotsman, Gu, and Sheffer have dealt with this issue
in [24]. They work with the alternative equations

∑
j∈Ni

wijf(vj) = λif(vi), vi ∈ V.

This equation says that a certain (positive) linear combination of the neigh-
bouring vectors f(vj) must be parallel to the unit vector f(vi), and the factor
λi > 1 is to be determined. Such a mapping is a spherical barycentric (or con-
vex combination) mapping. When the weights wij are constant with respect
to j we get an analogue of Tutte’s barycentric mapping into the plane. A theo-
rem by Colin de Verdière, described in [24], guarantees a valid embedding into
the sphere if certain conditions on the eigenvalues of the matrix formed by the

24 M. Floater and K. Hormann

left hand sides of the equation hold. Unfortunately, it is currently not known
how to guarantee these conditions and examples of simple meshes can be con-
structed for which there are several possible barycentric mappings, some of
which are not one-to-one. However, the paper by Gotsman, Gu, and Sheffer
looks like a good start-point for future work in this direction.

The angle-based method of Sheffer and de Sturler [69] has been generalized
in a straightforward manner to the spherical case by Sheffer, Gotsman, and
Dyn [71] using a combination of angle and area distortion. The stretch metric
approach of Sander et al. [62] has been generalized to the spherical case by
Praun and Hoppe [58].

9.2 Surfaces with arbitrary genus

A well-known approach to parameterizing (mesh) surfaces of arbitrary genus
over simpler surfaces of the same genus is to somehow segment the mesh into
disk-like patches and then map each patch into the plane. Usually, triangular-
shaped patches are constructed and each patch is mapped to a triangle of a
so-called base mesh.

The challenge of this approach is to obtain mappings that are smooth
across the patch boundaries and the first methods [12, 42, 59, 30, 21] suffered
indeed from this problem. But recently Khodakovsky, Litke, and Schröder [38]
and Gu and Yau [28] proposed two different methods to compute parameter-
izations that are globally smooth with singularities occurring at only a few
extraordinary vertices.

10 Conclusion

We have summarized as best we can both early and recent advances in the
topic of surface parameterization. In addition to the 35 papers we have men-
tioned earlier in the text, we have added to the reference list a further 43
references to papers on surface parameterization, giving a total of 78 papers.

We feel it fair to say that the topic, as we know it now, began with the 1995
paper on the discrete harmonic map by Eck et al. [12], though essentially the
same method was proposed in 1993 by Pinkall and Polthier [56] for computing
minimal surfaces. During the period 1995–2000, we know of 19 published
papers on surface parameterization, many of which we summarized in [20]. In
contrast, we know of 49 papers on this topic which have been published during
the period 2001–2003; see Fig. 12. Thus there has clearly been a significant
increase in research activity in this area in the last three years. A strong focus
among these recent papers has been on methods which automatically find the
boundary mapping, and methods for spherical parameterizations and other
topologies. These two latter topics look likely to receive further attention in
the future.
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Fig. 12. Number of papers on surface parameterization per year (1985–2003).
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46. B. Lévy and J.-L. Mallet. Non-distorted texture mapping for sheared triangu-
lated meshes. In Proceedings of SIGGRAPH ’98, pages 343–352, 1998.

28 M. Floater and K. Hormann
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90. T. Radó. Aufgabe 41. Jahresbericht der Deutschen Mathematiker-Vereinigung,

35:49, 1926.
91. B. Riemann. Grundlagen für eine allgemeine Theorie der Functionen einer
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