Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data

Chien-Chang Ho Yung-Yu Chuang Fu-Che WuBing-Yu CherMing Ouhyoung

National Taiwan University

Overview: Marching Cubes

• The most cited paper in history of SIGGRAPH

http://www.siggraph.org/conferences/reports/s2004/articles/Visualizing_SIGGRAPH.html

WILLIAM E. LORENSEN AND HARVEY E. CLINE. Marching cubes: A high resolution 3d surface construction algorithm. In *Proceedings of ACM SIGGRAPH 1987*, pages 163–169.

from www.nasa.gov

from www.openqvis.com

from graphics.csie.ntu.edu.tw

Adaptive Resolution Consistent Topology

Sharp Features

Parallel Processing

Adaptive Resolution

..........

Consistent Topology

Sharp Features

Parallel Processing

Outline

Marching Cubes Table

- Using binary pattern of eight vertices
- Totally 256 cases in 15 configurations

Steps of marching cubes

Adaptive resolution

- [WILHELMS J., GELDER A. V.,1992]
- [SHU R. et al, 1995], etc.

Adaptive resolution

Crack patching

Consistent topology

- Ambiguity problems
 - [NIELSON G. M., HAMANN B. 1991]
 - [NATARAJAN B. K., 1994]
 - [CHERNYAEV E., 1995], etc.

Sharp features

Sharp eature

- [KOBBELT L. P. et al, 2001], EMC (Extended Marching Cubes).
- [JU T. et al, 2002], DC (Dual Contouring)

Hermite data: with additional normal direction

Sharp Features

Real-time through parallel processing

• limited by inter-cell dependency

Inter-cell dependency

Problems & Goals

Adaptive resolution

Consistent topology

Parallel processing

• Sharp features

Cubical Marching Squares

1: p	orocedure CubicalMarchingSquar	$\operatorname{Res}(\operatorname{HermiteData} H)$
2:	InitializeBaseGrid (B) ;	\triangleright initialize a coarse base grid B
3:	for each cell c in B	
4:	SUBDIVIDECELL $(H, c);$	
5:	end for	
6:	for each leaf face f	
7:	GenerateSegment (f) ;	
8:	end for	
9:	for each leaf cell c	
10:	EXTRACTSURFACE (c) ;	
11:	end for	
12: e	nd procedure	

Segment generation on faces for normal cases

Segment generation on faces for ambiguity cases

Joined

Segment generation in motion

Benefits - inter-cell independency 1.Faster 2.Parallelizable 3.Lower Error

Algorithm – CubicalMarchingSquares 1: **procedure** CUBICALMARCHINGSQUARES(HermiteData H) InitializeBaseGrid(B); \triangleright initialize a coarse base grid B 2: for each cell c in B3: SUBDIVIDECELL(H, c); 4: end for 5: for each leaf face f6: GENERATESEGMENT(f); 7: end for 8: for each leaf cell c9: EXTRACTSURFACE(c); 10: end for 11: 12: end procedure

CMS is crack free

Cracks are avoided using CMS

Benefits – adaptive & crack free 1. Smooth Shape 2. Reduce 3D → 2D

Benefits - consistent topology 1. Correct Shape 2. Lower Error

Benefits - consistent topology 1. Correct Shape 2. Lower Error

Comparison of Topology

Simulation

Available shapes

generated randomly in a limited space

Average geometric errors

case	times	DC	EMC	CMS] 1		
1	$3,\!590,\!980$	0.01473	0.00586	0.00383			
2	$1,\!554,\!028$	0.02309	0.01310	0.01013			
3	$207,\!302$	0.10027	0.01801	0.01263			
4	$30,\!972$	0.23064	0.00601	0.00422	0.1		
5	$803,\!311$	0.03779	0.02631	0.02011	0.1		
6	$101,\!875$	0.11998	0.02737	0.02633			
7	$12,\!198$	0.17139	0.09565	0.01628			
8	$109,\!141$	0.03979	0.02831	0.02184			
9	$72,\!201$	0.04721	0.03525	0.02492	0.04		
10	$4,\!237$	0.19682	0.05283	0.04541	0.01		
11	$70,\!238$	0.04789	0.03535	0.02620			
12	30,706	0.09845	0.04559	0.02419			
13	$1,\!405$	0.85461	0.92935	0.00100			
14	70,238	0.04821	0.03573	0.02653	0.001		

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Virtual Sculptor

Remeshing

CSG & LOD

Conclusion

Future work

Medical imaging by CMS

Acceleration using GPU

Preliminary result: Acceleration using GPU

Texture	Shader	Texture
Vector U Vector V	<pre>struct Pix { float2 tex : TEXCOORD0; }; struct Cout { float4 dif : COLOR0; }; Cout SharpFeature(const Pix In) { Cout Out; float3 u = tex2D(SN0, In.tex).xyz; float3 v = tex2D(SN1, In.tex).xyz; float3 v0 = tex2D(SN2, In.tex).xyz; float3 n0 = tex2D(SN3, In.tex).xyz; float3 n1 = tex2D(SN4, In.tex).xyz; float3 n1 = tex2D(SN5, In.tex).xyz; float3 n2 = tex2D(SN5, In</pre>	
Packing	float minSharpAngle = abs(dot(n0, n1)); bool bEag = minSharpAngle <constthetasharp; if (float of the text of the text of the text of the text of tex of text of text of text of text of</constthetasharp; 	us hpacking
Position V1 Normal N1	<pre>if (abs(fDet)<0.000001) {</pre>	
	Out.dif.xyz = (tex2D(SN2, In.tex).xyz + tex2D(SN4, In.tex).xyz)/2; Out.dif.w = -1; } return Out;	

Thanks

Applications

Cube based patterns by CMS

New patterns

Consistent Topology

• Triangle count

- Memory space requirement
- Computation

Marching squares (2D)...

6

Ambiguity problem

- Face ambiguty
 - [NIELSON G. M., HAMANN B. 1991], etc.

Ambiguity problem...

Segment generation on faces

V 0

V1