
Cross-Parameterization and Compatible Remeshing of 3D Models

Vladislav Kraevoy Alla Sheffer

University of British Columbia

National Taiwan University CMLAB , since 1991

Authors

Vladislav Kraevoy

Ph.D. Student

Assistant Professor

Copyright ◎ CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

Outline

- Introduction
- Previous work
- Goal & Algorithm
- Results
- Conclusion

-JONAL

Introduction (1/3)

- Many geometry processing application require a bijective mapping between models
- What do we need?
 - Cross-parameterization
 - Compatible meshes

Introduction (2/3)

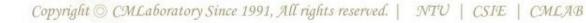
Cross-parameterization

- Parameterize the models on a common base domain
- Requirements
 - Bijectivity (one-to-one)
 - Feature correspondence
 - vertex to vertex
 - Low distortion

Copyright ◎ CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

Introduction (3/3)

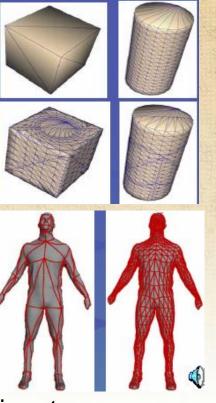
- Compatible meshes
 - Meshes with identical connectivity
 - Required by many applications of cross-parameterization
 - Morphing
 - Editing


Copyright O CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

Previous work (1/2)

Cross-parameterization
 – Sphere parameterization

- Not guarantee a bijective mapping
- Not always match the features
- Base mesh
 - Segment meshes into triangular patches (same connectivity)
 - Map patches to base triangles



Previous work

Compatible remeshing

- Mutual tessellation
 - Intersect meshes in parameter domain
- Regular base mesh refinement
 - Remesh with subdivision connectivity
- Both methods:
 - output meshes much larger (~x10) than input

(2/2)

Goal

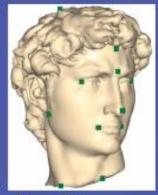
Cross-Parameterization

- Bijective
- Exact feature vertex correspondence
- Low distortion (preserve shape)
- Minimal user input: models + feature vertices

Compatible remeshing

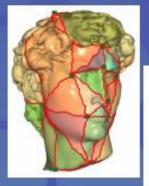
- Closely approximate the input models
- Similar (order of magnitude) number of elements as input

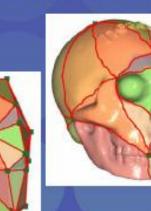
TAIWAN UNNER


- 3 main stages
 - 1.Construct a common base domain
 - 2.Low distortion cross-parameterization
 - 3.Compatibly remeshes the input models

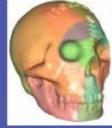


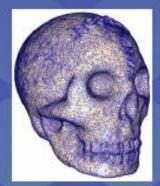
Algorithm Stages

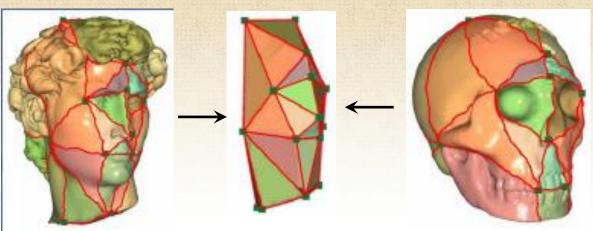

Input: models + features



Common base mesh construction

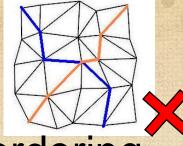

Provably correct for genus 0


2. Low distortion, bijective X-parameterization

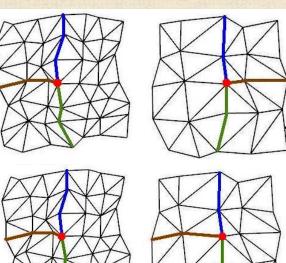

3. Compatible remeshing

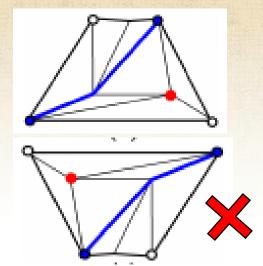
Construct a common base domain

 Goal: topologically identical triangular patch


Partition

- Assign feature points on both 2 meshes.
- Find the shortest path between each pair of feature vertices. (Dijkstra search)
 - The search is satisfied the legality condition
- Select the best pair of corresponding path and split the mesh.
 - Sort by the sum of path lengths on 2 meshes.
- Adding match path as we can




Legality Conditions

Paths don't intersect

- Consistent neighbor ordering
- Don't blocking

tory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

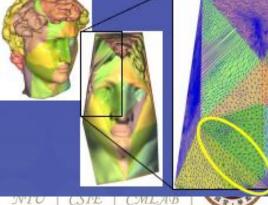
Fst

Initial cross-parameterization

Bs

Fş

Ft


Ms

Mt

Bad patch = high distortion – Solution: smoothing

Bs

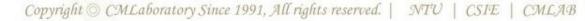
Copyright ◎ CMLaboratory Since 1991, All rights reserved. |

 $M_s \rightarrow M_t$

 $F = F_t^{-1} \cdot F_{st} \cdot F_s$

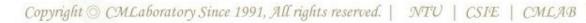
Smoothing

- All edges should satisfies adjacency constraint (guarantee a bijective mapping)
 - End vertices belong to the same patch
 - or to 2 adjacent patches (share a common boundary path)

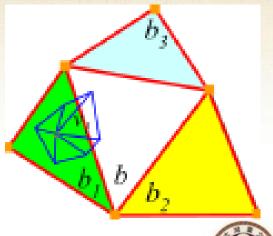


Smoothing

- For each mesh vertices
 - repeatedly modifying their locations on the base mesh
- The base mesh location of a vertex v
 - <b , v_b>
 - b : base triangle index
 - v_b: the barycentric coordinates defined with respect to the base triangle
- Relocate the vertex based on the locations of the neighboring vertices

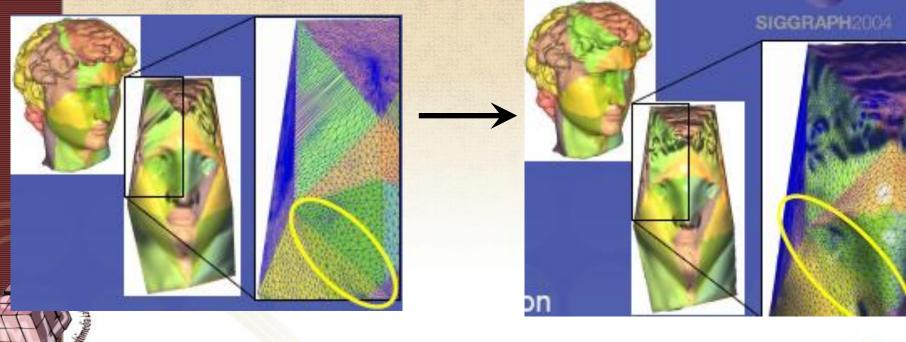

Smoothing

- 1. Set the three triangles adjecent to b
- 2. Map to a planar equilateral triangle E
- 3. mapping is defined
 - compute v to b using the barycentric coor.
 - compute the neighbor of v to E
- -4. compute the new location of v_E


$$v_E = \frac{1}{|Nei(v)|} \sum_{u \in Nei(v)} w_{uv} u_E$$

 Weight : mean value edge weight computed on the original mesh

- -6. Check <b',v'> if is satisfied the constraint
 - Satisfied : update the location of v to <b',v'>

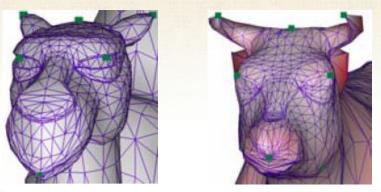

Smoothing

-5. Find the new <b',v'>

After Smoothing

-loz≯

TAIWAN UNIVER


Copyright ⊙ CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

 Compatible remeshing

 Use connectivity of one model ("source") as basis

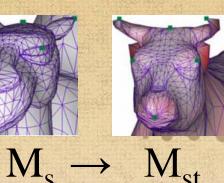
 M_{s}

 Map to second model ("target") using X-parameterization

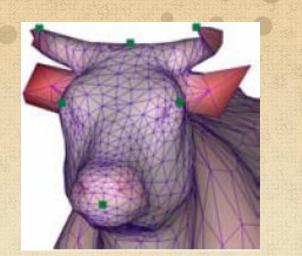
Copyright © CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

- Compatible remeshing
 - 1. Compute the distance approximation error
 - -2. error > threshold :
 - Relocate the vertices of M_{st} using smoothing
 - Refine the meshes
 - 3. Compute the normal approximation error and perform "pseudo" edge-flip refinement

- Compatible remeshing
 - 1. Compute the distance approximation error
 - Measure the distance between the vertices of M_t and the approximation surface


$$e(v) = (F'F^{-1}(v) - v)$$

$$e_{uv} = \left(\frac{e(u) + e(v)}{2} + e(\frac{u+v}{2})/2\right)$$
$$w_{uv} = (e_{uv} + w_{uv})/2$$



- Compatible remeshing
 - -2-1. smoothing
 - Modify the mapping F

The smoothing is same but weight is different

$$v_{E} = \frac{1}{|Nei(v)|} \sum_{u \in Nei(v)} w_{uv} u_{E} = \left(\frac{e(u) + e(v)}{2} + e(\frac{u + v}{2})/2\right)$$
$$w_{uv} = \left(\frac{e(u) + e(v)}{2} + \frac{e(u + v)}{2}\right)/2$$

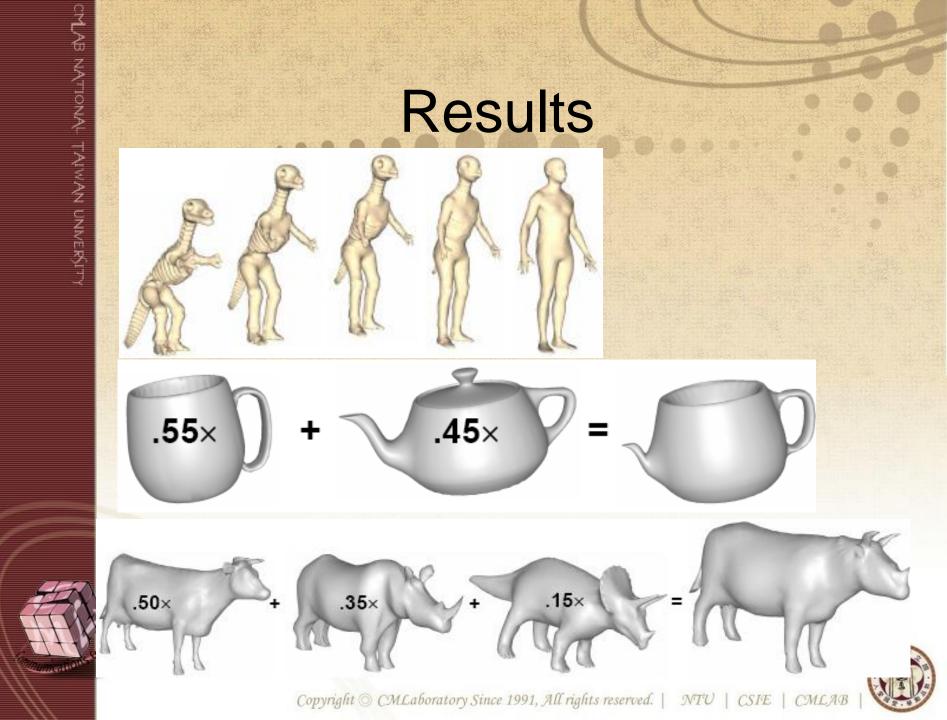
$M_{s} \rightarrow M_{st}$

- Compatible remeshing
 - 2-2. Refinement
 - Smoothing alone can't approximated the geometry accurately
 - Refinement is performing edge split operation
 - A edge is refined if $e_{uv} > \max(\frac{1}{2}\max_{(u',v')}(e_{u'v'}),\varepsilon)$
 - ε: user defined
 - Edge is split by placing a vertex at its midpoint

Compatible remeshing

- 3. Pseudo edge flips
- May be large deviation between the face normal of M_t and M_{st}
- Resloved by edge flips
- Reproduces the change in normals achieve by a flip

After Compatible remeshing


FAIWAN

UNNE

Copyright O CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

Conclusion

- Robust method for constrained Xparameterization
- New framework for low-distortion
 parameterization on base mesh
- New compatible remeshing scheme
 - Closely approximate input
 - Small output mesh
 - 20% more triangles

Movie

Cross-Parameterization and Compatible Remeshing of 3D Models

Copyright © CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB

~ The End~

CMLAB NATIONAL TAIWAN UNIVERSITY

Copyright © CMLaboratory Since 1991, All rights reserved. | NTU | CSIE | CMLAB