

Progressive Deforming Meshes based on Deformation Oriented Decimation and Dynamic Connectivity Updating

Fu-Chung Huang Bing-Yu Chen Yung-Yu Chuang

National Taiwan University

Goal - Level of Details

Well-established for static mesh.

Hoppe '96

Not for deforming meshes.

Mohr & Gleicher '03

DeCoro & Rusinkiewicz '05

Main Idea - Deformation

• The key distinction.

Technique by previous work

DeCoro & Rusinkiewicz '05

Agenda

- Static Connectivity
 - Quadric Error Metric (QEM)
 - Deformation Sensitive Decimation (DSD)
 - Deformation Oriented Decimation (DOD)
- Dynamic Connectivity
 - Vertex Tree (View Dependent Simplification)
 - Dynamic Connectivity Updating (DCU)

Quadric Error Metric (QEM)

1. Prepare Q.

2. Select min.

3. Contract and re-compute

4. Repeat

Deformation Sensitive Decimation (DSD)

Deformation Sensitive Decimation (DSD)

$Criteria = \Sigma_t Q^t$

Interpretation?

What we perceive in animation

.

Problem with DSD

Problem with DSD

Deformation Oriented Decimation (DOD)

Criteria = $\Sigma_t (Q^t + w_{eight} * \Delta l^t)$

Comparison

- Static Connectivity
 - QEM
 - Deformation Sensitive Decimation (DSD)
 - Deformation Oriented Decimation (DOD)
- Dynamic Connectivity
 - Vertex Tree (View Dependent Simplification)
 - Dynamic Connectivity Updating (DCU)

The need for dynamic connectivity

Extreme deformation or 3D morphing

Previous Approach – Dynamic Connectivity

- Progressive Multiresolution Meshes for Deforming Surfaces
 - by Kircher and Garland, SCA 2005

Vertex Tree for deforming meshes

Vertex Tree for deforming meshes

Vertex Tree for deforming meshes

- 1. No constraints on temporal coherences
- 2. Updating b2n frames

Video: Without Coherence

Revised Cost Function

Approximation

Result: DCU against DOD only

Dynamic Connectivity

Static Connectivity

......

Video: Connectivity Updating

Statistics - Updating

Results

Previous method Kircher and Garland (SCA05)

Statistics - Distortion

Result : Elephant-Horse Morphing

Elephant-Horse Morphing 42900v/85796f

...................

Result : SpaceTime Face

SpaceTime Faces Animation

Summary

• DOD

- Addition of deformation term
- Better triangulation and more tri.

• DCU

- Utilization of vertex trees
- Lower distortion and ^{*}

less updating

Limitation

Heuristics formulation for DOD

Used for contract-priority only

Sub-optimal solution for DCU

Approximated objective function

Not incremental

- As opposed to [Kircher and Garland '05]
- No hardware support

Acknowledgement

- Models
 - Sumner and Popovi´c for the horse-gallop animation
 - Alla Sheffer for the morphing data
 - Li Zhang for the facial expression animation
- Reviewers
- Supports
 - NSC, Taiwan
 - National Taiwan University

............

Thank You

...............

.....

Goal – Level of Details

- Static connectivity (DOD)
 - Articulated mesh

- Dynamic connectivity (DCU)
 - Extreme deformation, 3D morphing

Related Work

Related Work

Static Mesh

- Re-meshing approach

Eck et al. '95

- Simplification

Garland & Heckbert '97

Cohen-Steiner et al. '04

Hoppe '96

Related Work

- Deforming Mesh
 - Static connectivity

Mohr & Gleicher '03 – Dynamic connectivity

DeCoro & Rusinkiewicz '05

