Hierarchical Mesh Decomposition using Fuzzy Clustering and Cuts

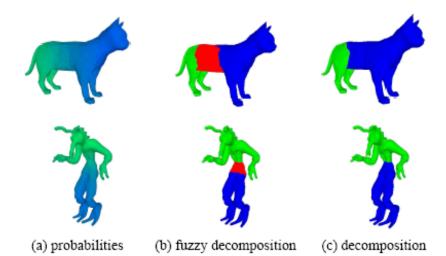
報告者: R95922120 黃維嘉

Outline

- Introduction
- Algorithm binary case
- Algorithm k way case
- Result
- Conclusion

Introduction

Fuzzy decomposition

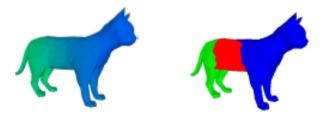


Definition 2.1 *k-way Decomposition:* $S_1, S_2, \ldots S_k$ is a *k-way* decomposition of S if f (i) $\forall i, 1 \leq i \leq k, S_i \subseteq S$, (ii) $\forall i, S_i$ is connected, (iii) $\forall i \neq j, 1 \leq i, j \leq k, S_i$ and S_j are face-wise disjoint and (iv) $\bigcup_{i=1}^k S_i = S$.

Definition 2.2 Binary Decomposition: S_1, S_2 is a binary decomposition of S if it is a k-way decomposition with k = 2.

Definition 2.3 Patch: Given $S_1, S_2, \ldots S_k$, a k-way decomposition of S, each S_i is called a patch of S.

Binary case (1/4)



Assign Probability

- Choose two faces REP_A and REP_B with largest distance as initial representative of the two cluster
- Assign probabilities to every faces according to the distances to the initial patches:

$$P_B(f_i) = \frac{Dist(f_i, REP_A)}{Dist(f_i, REP_A) + Dist(f_i, REP_B)} \qquad P_A(f_i) = 1 - P_B(f_i)$$

Dist(f_i,f_j) is the shortest path from f_i to f_j in mesh's dual graph with

$$\begin{aligned} Weight(dual(f_i), dual(f_j)) &= \delta \cdot \frac{Geod(f_i, f_j)}{avg(Geod)} + (1 - \delta) \cdot \frac{Ang _Dist(\alpha_{ij})}{avg(Ang _Dist)} \\ Ang _Dist(\alpha_{ij}) &= \eta(1 - \cos \alpha_{ij}) \end{aligned}$$

Binary case (2/4)

- Generating fuzzy decomposition
 - Goal: cluster faces by minimize the function

 $F = \sum_{p} \sum_{f} probability(f \in patch(p)) \cdot Dist(f, p)$

- Algorithm
 - 1. Compute the probabilities of faces to belong to each patch
 - 2. Re-compute the set of representatives to minimize F by

$$REP_{A} = \min_{f} \sum_{f_{i}} (1 - P_{B}(f_{i})) \cdot Dist(f, f_{i})$$
$$REP_{B} = \min_{f} \sum_{f} P_{B}(f_{i}) \cdot Dist(f, f_{i})$$

- 3. If the representative set is changed, go back to 1
- 4. If no change, partition faces as $A = \{f_i \mid P_B(f_i) < 0.5 \varepsilon\}$ $B = \{f_i \mid P_B(f_i) > 0.5 + \varepsilon\}$ $C = \{f_i \mid 0.5 \varepsilon \le P_B(f_i) \le 0.5 + \varepsilon\}$

Binary case (3/4)

Generate final decomposition

- □ G(V,E) : dual graph of mesh.
- VA,VB : the set of dual vertices of patches A and B respectively
- Goal: partition V into VA', VB' such that

$$V_{A} \subseteq V_{A'}, V_{B} \subseteq V_{B'}$$

weight $(Cut(V_{A'}, V_{B'})) = \sum_{u \in V_{A'}, v \in V_{B'}} \omega(u, v)$ is minimal

 \rightarrow Construct a flow network graph G(V',E') such that

$$V' = V_{C} \cup V_{CA} \cup V_{CB} \cup \{S, T\}$$

$$E' = E_{C} \cup \{(S, v), \forall v \in V_{CA}\} \cup \{(T, v), \forall v \in V_{CB}\} \cup \{e_{ij} \in E \mid i \in V_{C}, j \in \{V_{CA} \cup V_{CB}\}\}$$

With capacity Cap(I,j) and use max flow algorithm to find min cut

$$Cap(i, j) = \begin{cases} \frac{1}{1 + \frac{Ang _Dist(\alpha_{ij})}{avg(Ang _Dist)}} & \text{if } \{i, j \neq S, T\} \\ \infty & \text{else} \end{cases}$$

Binary case (4/4)

Hierarchy decomposition

 Every patches can be recursively decomposed so that we can get a hierarchy structure

Stop condition

The hierarchy decomposition is stopped when

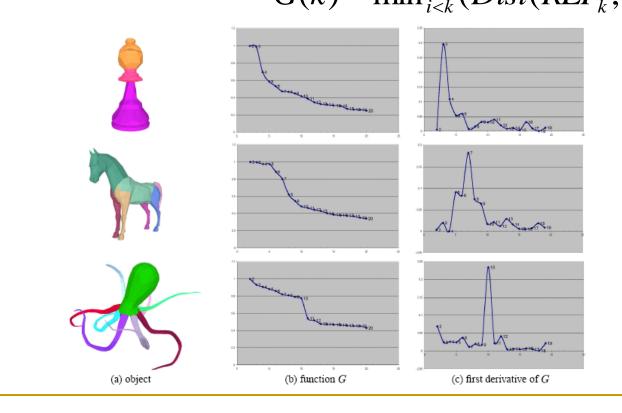
- (a) Distance between representative is smaller than a threshold
- (b) Difference between max and min dihedral angle is smaller than threshold
- (c) The ratio between the average distance in the patch and that of the overall object does not exceed a threshold

K way case(1/3)

- A generalization of binary case
- Representatives are choose iteratively
 - 1st representative: Choose the face having the minimal sum of distances from all other faces (body)
 - Other representative: added in turn so as to maximize their minimal distance from previous assigned representatives

K way case(2/3)

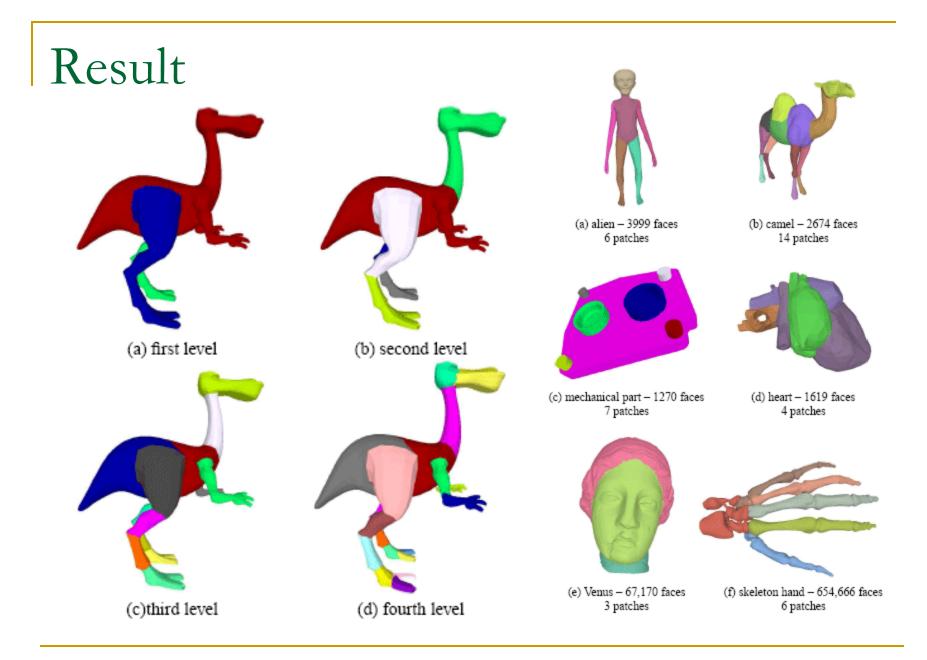
• The number of representatives is chosen to minimize the first derivative of $G(k) = \min_{i < k} (Dist(REP_k, REP_i))$



K way case(3/3)

The probability that face f_i belonging to patch P_j is defined as $P_{P_j}(f_i) = \frac{Dist(f_i, REP(P_j))}{\sum_{i} \frac{1}{Dist(f_i, REP(P_i))}}$

- To extract the fuzzy area, each pair of neighboring components are proceeded similarly to the binary case
- Complexity: $O(V^2 \log V + IV^2)$
 - V is number of vertex, I is number of iteration
 - V²logV for all pair shortest path and minimum cut algorithm
 - IV² for assigning faces to patches



Conclusion

- The hierarchically decomposition algorithm avoid jaggy boundaries as well as over segmentation
- Different distance function and capacity function can be experimented with
- Non-geometric features such as color and texture can be embedded in the algorithm

