Multiresolution Mesh Morphing

Aaron W.F. Lee, David Dobkin, Win Sweldens, Peter Schroder SIGGRAPH 99

Presented by Dai Shi-Chiang

Outline

- Introduction
- Previous Work
- Contribution
- Correspondence Map
- Metamesh
- Results
- Conclusions and Future Work

Introduction

- Metamorphosis(morphing) is the process of gradually changing a source object through intermediate objects into a target object.
- Advances in 3D scanning and acquisition technology have made dense triangle meshes popular as representations of complex objects.
- For boundary representations, the key problem is to find *vertex correspondence*.

Introduction

- Vertex correspondence

- 1. Projection
- 2. Resample
- 3. Geometry Surface
- 4. Two dimensional correspondence

Previous Work

• Gregory, State, Lin, et al. 1998

- Give a method that allows the user to specify pairs and then decompose the polyhedron into patches.

• Kanei et al. 1998, 2000

 By overlapping source and target embedded meshes, they establish correspondence between vertices of two meshes.

Drawback: The user has to outline all patches

Contribution

Dense correspondences for arbitrary meshes.

The only requirement: two meshes should be topologically equivalent.

Fine and coarse user control.

- Fine control: one can simply mark feature points or lines on each mesh (original mesh) and pairing them up.
- Coarse control: Modifying the mapping between the coarse source and target domains (moving corresponding vertex)

Correspondence Map

 Overview of the correspondence map computation.

Π_s and Π_t⁻¹ are computed using MAPS
 M = Π_t⁻¹ M⁽⁰⁾ Π_s

Correspondence Map - Computing M⁽⁰⁾

- Globally align the source and target base domains and project the source base domain to the target base domain.
- Apply an iterative relaxation procedure to improve the mapping.
- User adjustment of the coarse correspondence to produce the final mapping.

Correspondence Map - Global alignment

- Given the feature points, we can directly define their correspondence map as $M^{(0)}(s_i) = t_i$, where s_i/t_i is the feature point of source/target base domain,
- For other points, we use Chen and Medioni's method to globally align the two base domains and then compute a starting guess for M⁽⁰⁾(s_i) as the projection of s_i onto the closest triangle of φ(K_t⁽⁰⁾)
- The initial projection is improved through an iterative relaxation procedure.

Correspondence Map - Relaxation

• Relaxation of source base domain vertices on the target base domain.

$$\begin{split} \vec{d}_{j} &= \frac{v'_{j} - v}{\|v'_{j} - v\|}, \\ v &:= (1 - \xi)v + \xi \sum_{j} \frac{\vec{d}_{j}}{l_{j}}, \\ \xi &< 1 \end{split}$$

Correspondence Map

- Relaxation

- Assume the guess for M⁽⁰⁾(s_i) lies in a triangle φ(t) (t∈T⁽⁰⁾) of the target base domain.
- Let $v = M^{(0)}(s_i)$ and $v_i =$ neighbors of v
- Then
 - 1. compute the shortest paths between v and each of the v_i
 - 2. denote their lengths as measured on the mesh by l_i
 - 3. The intersection between the boundary of $\varphi(t)$ and each shortest path is given by v_i'
- The new, relaxed position is illustrated in previous slide.

Correspondence Map - User control

 After relaxation, we get an initial solution to the base domain correspondence.

 Sometimes, the initial solution may not be good enough so we allow user to map a vertex on the source base domain onto any point on the target base domain.

Correspondence Map - Extending M⁽⁰⁾

 The source base domain triangle maps to a triangular shaped region (shaded) on the target base domain.

Correspondence Map - Extending M⁽⁰⁾

 At this point, we have computed M⁽⁰⁾ only for the vertices of S⁽⁰⁾.

 For computing the map for *any* point of source base domain, the piecewise linear harmonic map technique of Eck et al. is used.

Correspondence Map

- Final map

- Now we can place any source mesh point onto the target using the composition $\Pi_t^{-1} M^{(0)} \Pi_s$
- However, we only get the source vertices placed on the target mesh with the source connectivity.
- So we introduce the the notion of a metamesh.

• The purpose of Metamesh (P,K_p) is to combine the source connectivity and target connectivity

• The intersections define the new vertices of the metamesh

• New vertices in metamesh, A,B,C could get attributes derived from PQR using barycentric interpolation.

The interpolation scheme

 Simplest solution
 θ(t) = t
 Gentle fade-in and fad-out
 θ(t) = ½ - ½ cos(πt)

 Spatial control
 θ(t,i) = x, with {i}∈K_p

• Mannequin to Venus

Source-Target	Source size (triangles)	Target size (triangles)	Metamesh size (triangles)	Feature pairs	Corresp. map time	Metamesh time	User time
mann-venus	5422	90709	225502	24	3'	19'	5'
cup-donut	8452	2048	43188	30	1'20"	4'	30'
mann-spock	5422	14100	75427	24	1'	7'	5'
horse-rabbit	21130	21582	220201	60	22'	27'	60'

• Cup to Donuts (Genus-1)

Source-Target	Source size (triangles)	Target size (triangles)	Metamesh size (triangles)	Feature pairs	Corresp. map time	Metamesh time	User time
mann-venus	5422	90709	225502	24	3,	19'	5'
cup-donut	8452	2048	43188	30	1'20"	4'	30'
mann-spock	5422	14100	75427	24	1'	7'	5'
horse-rabbit	21130	21582	220201	60	22'	27'	60'

• Mannequin to Spock (Spatial control)

Source-Target	Source size	Target size	Metamesh size	Feature	Corresp.	Metamesh	User
	(triangles)	(triangles)	(triangles)	pairs	map time	time	time
mann-venus	5422	90709	225502	24	3'	19'	5'
cup-donut	8452	2048	43188	30	1'20"	4'	30'
mann-spock	5422	14100	75427	24	1'	7'	5'
horse-rabbit	21130	21582	220201	60	22'	27'	60'

• Horse to Rabbit

Source-Target	Source size	Target size	Metamesh size	Feature	Corresp.	Metamesh	User
	(triangles)	(triangles)	(triangles)	pairs	map time	time	time
mann-venus	5422	90709	225502	24	3'	19'	5'
cup-donut	8452	2048	43188	30	1'20"	4'	30'
mann-spock	5422	14100	75427	24	1'	7'	5'
horse-rabbit	21130	21582	220201	60	22'	27'	60'

• Modification of the rabbit base domain to more closely match the horse base domain

Conclusions and Future work

- Extending MAPS to deal with genus changes.
- More sophisticated interpolation controls.
- We can compute a wavelet transform on the metamesh.
- Editing the metamesh in certain keyframes.
- More tools to help users guide the correspondence map.