Multiresolution Mesh Morphing

Aaron W.F. Lee, David Dobkin, Win Sweldens, Peter Schroder

SIGGRAPH 99

Presented by Dai Shi-Chiang

Outline

- Introduction
- Previous Work
- Contribution
- Correspondence Map
- Metamesh
- Results
- Conclusions and Future Work

Introduction

- Metamorphosis(morphing) is the process of gradually changing a source object through intermediate objects into a target object.
- Advances in 3D scanning and acquisition technology have made dense triangle meshes popular as representations of complex objects.
- For boundary representations, the key problem is to find vertex correspondence.

Introduction

- 1. Projection
- 2. Resample
- 3. Geometry Surface
- 4. Two dimensional correspondence

Previous Work

- Gregory, State, Lin, et al. 1998
- Give a method that allows the user to specify pairs and then decompose the polyhedron into patches.
- Kanei et al. 1998, 2000
- By overlapping source and target embedded meshes, they establish correspondence between vertices of two meshes.
- Drawback: The user has to outline all patches

Contribution

- Dense correspondences for arbitrary meshes.
- The only requirement: two meshes should be topologically equivalent.
- Fine and coarse user control.
- Fine control: one can simply mark feature points or lines on each mesh (original mesh) and pairing them up.
- Coarse control: Modifying the mapping between the coarse source and target domains (moving corresponding vertex)

Correspondence Map

- Overview of the correspondence map computation.
- Π_{s} and Π_{t}^{-1} are computed using MAPS
- $\mathrm{M}=\Pi_{\mathrm{t}}^{-1} \mathrm{M}^{(0)} \Pi_{\mathrm{s}}$

Correspondence Map - Computing M ${ }^{(0)}$

- Globally align the source and target base domains and project the source base domain to the target base domain.
- Apply an iterative relaxation procedure to improve the mapping.
- User adjustment of the coarse correspondence to produce the final mapping.

Correspondence Map - Global alignment

- Given the feature points, we can directly define their correspondence map as $\mathrm{M}^{(0)}\left(s_{i}\right)=t_{i}$, where s_{i} / t_{i} is the feature point of source/target base domain,
- For other points, we use Chen and Medioni's method to globally align the two base domains and then compute a starting guess for $\mathrm{M}^{(0)}\left(s_{i}\right)$ as the projection of s_{i} onto the closest triangle of $\varphi\left(\mathrm{K}_{\mathrm{t}}{ }^{(0)}\right)$
- The initial projection is improved through an iterative relaxation procedure.

Correspondence Map - Relaxation

- Relaxation of source base domain vertices on the target base domain.

$$
\vec{d}_{j}=\frac{v_{j}^{\prime}-v}{\left\|v_{j}^{\prime}-v\right\|},
$$

$$
v:=(1-\xi) v+\xi \sum_{j} \frac{\vec{d}_{j}}{l_{j}},
$$

$$
\xi<1
$$

Correspondence Map - Relaxation

- Assume the guess for $\mathrm{M}^{(0)}\left(s_{i}\right)$ lies in a triangle $\varphi(\mathrm{t})\left(\mathrm{t} \in \mathrm{T}^{(0)}\right)$ of the target base domain.
- Let $v=\mathrm{M}^{(0)}\left(s_{i}\right)$ and $v_{j}=$ neighbors of v
- Then
- 1. compute the shortest paths between v and each of the v_{j}
- 2. denote their lengths as measured on the mesh by l_{j}
- 3. The intersection between the boundary of $\varphi(\mathrm{t})$ and each shortest path is given by v_{j}^{\prime}
- The new, relaxed position is illustrated in previous slide.

Correspondence Map - User control

- After relaxation, we get an initial solution to the base domain correspondence.
- Sometimes, the initial solution may not be good enough so we allow user to map a vertex on the source base domain onto any point on the target base domain.

Correspondence Map

 - Extending $\mathrm{M}^{(0)}$- The source base domain triangle maps to a triangular shaped region (shaded) on the target base domain.

Correspondence Map - Extending M ${ }^{(0)}$

- At this point, we have computed $\mathrm{M}^{(0)}$ only for the vertices of $\mathrm{S}^{(0)}$.
- For computing the map for any point of source base domain, the piecewise linear harmonic map technique of Eck et al. is used.

Correspondence Map - Final map

- Now we can place any source mesh point onto the target using the composition $\Pi_{t}^{-1} \mathrm{M}^{(0)} \Pi_{\mathrm{s}}$
- However, we only get the source vertices placed on the target mesh with the source connectivity.
- So we introduce the the notion of a metamesh.

Metamesh

- The purpose of Metamesh $\left(\mathrm{P}, \mathrm{K}_{\mathrm{p}}\right)$ is to combine the source connectivity and target connectivity

Metamesh

- The intersections define the new vertices of the metamesh

Metamesh

- New vertices in metamesh, A,B,C could get attributes derived from PQR using barycentric interpolation.

Metamesh

- The interpolation scheme
- Simplest solution

$$
\theta(\mathrm{t})=\mathrm{t}
$$

- Gentle fade-in and fad-out

$$
\theta(\mathrm{t})=1 / 2-1 / 2 \cos (\pi \mathrm{t})
$$

- Spatial control

$$
\theta(t, i)=x \text {, with }\{i\} \in K_{p}
$$

Results

- Mannequin to Venus

Source-Target	Source size (triangles)	Target size (triangles)	Metamesh size (triangles)	Feature pairs	Corresp. map time	Metamesh time	User time
mann-venus	5422	90709	225502	24	$3 \prime$	19^{\prime}	5^{\prime}
cup-donut	8452	2048	43188	30	120^{\prime}	4,	30
mann-spock	5422	14100	75427	24	1,	7^{\prime}	5^{\prime}
horse-rabbit	21130	21582	220201	60	22^{\prime}	27^{\prime}	60

Results

- Cup to Donuts (Genus-1)

Source-Target	Source size (triangles)	Target size (triangles)	Metamesh size (triangles)	Feature pairs	Corresp. map time	Metamesh time	User time
mann-venus	5422	90709	225502	24	3^{\prime}	19^{\prime}	5^{\prime}
cup-donut	8452	2048	43188	30	$1,20^{\prime \prime}$	4^{\prime}	30^{\prime}
mann-spock	5422	14100	75427	24	1,	7^{\prime}	5^{\prime}
horse-rabbit	21130	21582	220201	60	22^{\prime}	27^{\prime}	60^{\prime}

Results

- Mannequin to Spock (Spatial control)

Source-Target	Source size (triangles)	Target size (triangles)	Metamesh size (triangles)	Feature pairs	Corresp. map time	Metamesh time	User time
mann-venus	5422	90709	225502	24	3,	19^{\prime}	5^{\prime}
cup-donut	8452	2048	43188	30	$1,20^{\prime}$,	4,	30^{\prime}
mann-spock	5422	14100	75427	24	1,	7^{\prime}	5^{\prime}
horse-rabbit	21130	21582	220201	60	22^{\prime}	27^{\prime}	60^{\prime}

Results

- Horse to Rabbit

Source-Target	Source size (triangles)	Target size (triangles)	Metamesh size (triangles)	Feature pairs	Corresp. map time	Metamesh time	User time
mann-venus	5422	90709	225502	24	$3 \prime$	19^{\prime}	5^{\prime}
cup-donut	8452	2048	43188	30	$1,20^{\prime \prime}$	4^{\prime}	30^{\prime}
mann-spock	5422	14100	75427	24	1^{\prime}	7^{\prime}	5^{\prime}
horse-rabbit	21130	21582	220201	60	22^{\prime}	27^{\prime}	60^{\prime}

Results

- Modification of the rabbit base domain to more closely match the horse base domain

Conclusions and Future work

- Extending MAPS to deal with genus changes.
- More sophisticated interpolation controls.
- We can compute a wavelet transform on the metamesh.
- Editing the metamesh in certain keyframes.
- More tools to help users guide the correspondence map.

