Surface Simplification Using Quadric Error Metrics (QEM)

Michael Garland Paul Heckbert SIGGRAPH 97

Demo

Objectives

- Fast and good quality
 - Efficiency and quality trade-off

Convenient characterization of error/shape
 Compact and efficient to compute

Things to consider

1. Defining the basic operation

2. Defining the error metrics

3. Primitives removal strategy

4. Remaining updates

Basic operation

The error metrics – 2D

The error metrics – 2D

Matrix form

$$L_1 = [a_1]$$
 $v = [xo]$
 $[a_1 \ b_1 \ c_1] * [x_0]$
 $[b_1]$
 $[y_0]$
 $[y_0]$
 $[c_1]$
 $[1]$

$$d_{1}^{2} = [x_{o} \ y_{o} \ 1] *[a_{1}]*[a_{1} \ b_{1} \ c_{1}]*[x_{o}] [b_{1}] [y_{o}] [c_{1}] [1]$$

$$d_1^2 = v^T * (L_1^* L_1^T) * v = v^T * (Q_1) * v$$

Line segment $L_1: a_1x + b_1y + c_1 = o$ (x_0, y_0) to L_1 is $d_1 = |a_1 * x_0 + b_1 * y_0 + c_1|$

The error metrics – 2D

 $v = (x_o, y_o)$

Total squared distance $E_v = \boldsymbol{\Sigma}_i v^T * (L_i * L_i^T) * v = v^T * (\boldsymbol{\Sigma}_i Q_i) * v$

[1]

To better fit the curve minimize squared distance $dE_v/dv = (\Sigma_i Q_i) * v = [0]$ [0] [1] So best v is at $(\Sigma_i Q_i)^{-1} * [0]$ [0]

For meshes

• Use plane equation instead of line equation

$$-ax + by + cz + d = 0$$

$$\cdot a^{2} + b^{2} + c^{2} = 1$$

$$-v = [v_{x} \ v_{y} \ v_{z} \ 1]^{T}$$

$$-p = [a \ b \ c \ d]^{T}$$

$$\Delta(\mathbf{v}) = \sum_{\mathbf{p} \in \text{planes}(\mathbf{v})} (\mathbf{v}^{T}\mathbf{p})(\mathbf{p}^{T}\mathbf{v})$$

$$= \sum_{\mathbf{p} \in \text{planes}(\mathbf{v})} \mathbf{v}^{T}(\mathbf{p}\mathbf{p}^{T})\mathbf{v}$$

$$= \mathbf{v}^{T} \left(\sum_{\mathbf{p} \in \text{planes}(\mathbf{v})} \mathbf{K}_{\mathbf{p}}\right) \mathbf{v}$$

$$\mathbf{K}_{\mathbf{p}} = \mathbf{p}\mathbf{p}^{T} = \begin{bmatrix} a^{2} \ ab \ ac \ ad \\ ab \ b^{2} \ bc \ bd \\ ac \ bc \ c^{2} \ cd \\ ad \ bd \ cd \ d^{2} \end{bmatrix}$$

Things to consider

- 1. Defining the basic operation
- 2. Defining the error metrics
- 3. Primitives removal strategy
- 4. Remaining updates

Primitives removal strategy

But which one?

Total squared distance $E_v = \boldsymbol{\Sigma}_i v^T * (L_i * L_i^T) * v = v^T * (\boldsymbol{\Sigma}_i Q_i) * v$

Use priority queue!

Efficiency consideration

Accumulated error w/ respect to ALL underlying segments!
How many do we have in queue?

Cheats!

- Keep indices to all underlying segments!
 - Storage and indexing speed.
 - Sometimes you only compare errors
- So vertices remember their own incident segments as $Q = Q_3 Q_4$
 - V_{new} = minimize $(Q_i + Q_j)^{-1}$
 - Just sum two
 - The middle counted twice
 - For meshes, 3 times

Cheats!

- So vertices remember their own incident segments as Q
 - $V_{new} = minimize (Q_i + Q_j)^{-1}$
 - Just sum two
 - The middle counted twice

- **1. Defining the basic operation**
- 2. Defining the error metrics
- 3. Primitives removal strategy
- 4. Remaining updates

- 1. Defining the basic operation
- 2. Defining the error metrics
- 3. Primitives removal strategy
- 4. Remaining updates

- 1. Defining the basic operation
- 2. Defining the error metrics
- 3. Primitives removal strategy
- 4. Remaining updates

- 1. Defining the basic operation
- 2. Defining the error metrics
- 3. Primitives removal strategy
- 4. Remaining updates

Illustration of operations

- 1. Initial Q for every vertices
- 2. Compute v_{new} and $err(v_{new})$ for every edges
 - 1. $V_{1-2}, V_{2-3}, V_{3-4}, V_{4-5} \dots$
 - 2. $(Q_1+Q_2)^{-1}, (Q_2+Q_3)^{-1}, (Q_3+Q_4)^{-1}, (Q_4+Q_5)^{-1}...$
 - 3. Put into min heap

Illustration of operations

- 3. Select min $err(V_{ij})$ to contract
- 4. Update **necessary items** in the min heap
 - 1. V1-23, V23-4, V3-4, V4-5
 - 2. Their Q
- 5. Repeat step-3

Iterations from paper

- 1. Compute the Q matrices for all the initial vertices
- 2. Compute the optimal contraction target \mathbf{v}_{new} for each valid pair $\mathbf{v}_1 \mathbf{v}_2$. The error $\mathbf{v}_{new}^T (\mathbf{Q}_1 + \mathbf{Q}_2) \mathbf{v}_{new}$ of this target vertex becomes the *cost* of contracting that pair.
- 3. Place all the pairs in a heap keyed on cost with the minimum cost pair at the top.
- 4. Iteratively remove the pair $\mathbf{v}_1 \, \mathbf{v}_2$ of least cost from the heap, contract this pair, and update the costs of all valid pairs involving v_{New}

Objectives

- Fast and good quality
 - Efficiency and quality trade-off
 - No indexing
 - Only require necessary updates
- Convenient characterization of error/shape
 - Compact and efficient to compute
 - 10 coefficient, 4x4 matrix inversion/addition

Something not addressed...

- Focused on 2-manifold
 - no joining
- Boundary condition
 - Eaten away
- Triangle inversion
 - Why have the case?

