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Parametric Curves and Surfaces 

 Mathematical Curve Representation  

 Parametric Cubic Curves 

 Parametric Bi-Cubic Surfaces 



The Utah Teapot 

http://en.wikipedia.org/wiki/Utah_teapot 
http://www.sjbaker.org/teapot/ 



Mathematical Curve Representation 

 Explicit y=f(x) 

 what if the curve is not a function, 
e.g., a circle? 

 Implicit g(x,y)=0 

 

 Parametric (x(u),y(u)) 

 For the circle: 



Recall: Plane Equation 

   

 and            means the normal vector 

 so, given points   ,   , and    on the plane 

   

 what happened if                     ? 

 the distance from a vertex          to the 
plane is 
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Parametric Polynomial Curves 

 We will use parametric curves where 
the functions are all polynomials in 
the parameter. 

 

 

 

 Advantages: 
 easy (and efficient) to compute 

 infinitely differentiable 
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Parametric Cubic Curves 

 Fix 

 The cubic polynomials that define a 
curve segment                            are 
of the form 
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Parametric Cubic Curves 

 The curve segment can be rewrite as 

 

 

 where 
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Tangent Vector 
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Three Types of 
Parametric Cubic Curves 

 Hermite Curves 

 defined by two endpoints and two 
endpoint tangent vectors 

 Bézier Curves 

 defined by two endpoints and two 
control points which control the 
endpoint’ tangent vectors 

 Splines 

 defined by four control points 



Parametric Cubic Curves 

   

 rewrite the coefficient matrix as 

 where    is a 4x4 basis matrix,     is 
called the geometry matrix 

 so 
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Parametric Cubic Curves 

   

 where            is called the blending 
functions 
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Hermite Curves 

 Given the endpoints   and    and 
tangent vectors at them    and 

 What is 

 Hermite basis matrix 

 Hermite geometry vector 

 Hermite blending functions 

 by definition 
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Hermite Curves 

 since  
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Hermite Curves 

 so 

 

 

 

 and 
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Computing a point 

 Given two endpoints   and    and two 
tangent vectors at them    and 
 
 
 
so 
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Bézier Curves 

 Given the endpoints   and    and two 
control points    and   which 
determine the endpoints’ tangent 
vectors, such that 

 

 What is 
 Bézier basis matrix 

 Bézier geometry vector 

 Bézier blending functions 
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Bézier Curves 

 by definition 

 then 

 

 

 

 

 so 
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Bézier Curves 

 and 
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Bernstein Polynomials 

 The coefficients of the control points 
are a set of functions called the 
Bernstein polynomials: 

 For degree 3, we have: 
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Bernstein Polynomials 

 Useful properties on the interval [0,1]: 

 each is between 0 and 1 

 sum of all four is exact 1 

 a.k.a., a “partition of unity” 

 These together imply that the curve 
lines within the convex hull of its 
control points. 
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Subdividing Bézier Curves 
 

   

 How to draw the curve ? 

 How to convert it to be line-segments ? 
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Subdividing Bézier Curves 
(de Casteljau’s algorithm) 

   

 How to draw the curve ? 

 How to convert it to be line-segments ? 
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Display Bézier Curves 

DisplayBezier(P1,P2,P3,P4) 

begin 
if (FlatEnough(P1,P2,P3,P4)) 
    Line(P1,P4); 
else 
    Subdivide(P[])=>L[],R[] 
    DisplayBezier(L1,L2,L3,L4); 
    DisplayBezier(R1,R2,R3,R4); 

end; 

1P

4P

2P

3P



Testing for Flatness 

 Compare total length of control 
polygon to length of line connecting 
endpoints 
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What do we want for a curve? 

 Local control 

 Interpolation 

 Continuity 



Local Control 

 One problem with Bézier curve is that every 
control points affect every point on the 
curve (except for endpoints). Moving a 
single control point affects the whole curve. 

 We’d like to have 
local control, that is, 
have each control 
point affect some 
well-defined 
neighborhood 
around that point. 



Interpolation 

 Bézier curves are approximating. The curve 
does not necessarily pass through all the 
control points. We’d like to have a curve 
that is interpolating, that is, that always 
passes through every control points. 



Continuity 
between Curve Segments 
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Continuity 
between Curve Segments 

 G0 geometric continuity 

 two curve segments join together 

 

 G1 geometric continuity 

 the directions (but not necessarily the 
magnitudes) of the two segments’ 
tangent vectors are equal at a join point 



Continuity 
between Curve Segments 

 C1 continuous 

 the tangent vectors of the two cubic 
curve segments are equal (both 
directions and magnitudes) at the 
segments’ join point 

 Cn continuous 

 the direction and magnitude of 
through the nth derivative are equal at 
the join point 
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Continuity 
between Curve Segments 
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Continuity 
between Curve Segments 
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Bézier Curves → Splines 

 Bézier curves have C-infinity continuity on 
their interiors, but we saw that they do not 
exhibit local control or interpolate their 
control points. 

 It is possible to define points that we want 
to interpolate, and then solve for the Bézier 
control points that will do the job. 

 But, you will need as many control points 
as interpolated points -> high order 
polynomials -> wiggly curves. (And you still 
won’t have local control.) 



Bézier Curves → Splines 

 We will splice together a curve from 
individual Bézier segments. We call 
these curves splines. 

 When splicing Bézier together, we 
need to worry about continuity. 



Ensuring C0 continuity 

 Suppose we have a cubic Bézier 
defined by              , and we want to 
attach another curve                 to it, 
so that there is C0 continuity at the 
joint. 

 

 What constraint(s) does this place on 
                ? 
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Ensuring C1 continuity 

 Suppose we have a cubic Bézier 
defined by              , and we want to 
attach another curve                 to it, 
so that there is C1 continuity at the 
joint. 

 

 What constraint(s) does this place on 
                ? 
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The C1 Bézier Spline 

 How then could we construct a curve 
passing through a set of points       ? 

 

 

 

 

 

 We can specify the Bézier control points directly, 
or we can devise a scheme for placing them 
automatically… 
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Catmull-Rom Spline 

 If we set each derivative to be one half of 
the vector between the previous and next 
controls, we get a Catmull-Rom Spline. 

 This leads to: 
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Catmull-Rom Basis Matrix 
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Ensuring C2 continuity 

 Suppose we have a cubic Bézier 
defined by              , and we want to 
attach another curve                 to it, 
so that there is C2 continuity at the 
joint. 
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B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 



B-Spline 
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B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 
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B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 

1V

2V 3V

4 1V W

2W

3W 4W

2B1B

0B 3B

4B

1 1 2 1 2 3 2

2 2 3 2

1 2 1
( ) ( )

2 3 3

1
( )

3

V B B B B B B

V B B B

 
      

 

  



B-Spline 

 Instead of specifying the Bézier control points 
themselves, let’s specify the corners of the A-frames 
in order to build a C2 continuous spline. 
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 These are called B-
Splines. The starting 
set of points are called 
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B-Spline 
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Uniform NonRational B-Splines 

 cubic B-Spline 
 has       control points 

 has       cubic polynomial curve segments 
   

 uniform 
 the knots are spaced at equal intervals 

of the parameter 

 non-rational 
 not rational cubic polynomial curves 
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Uniform NonRational B-Splines 

 curve segment    is defined by points 
               , thus 

 B-Spline geometry matrix 
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Uniform NonRational B-Splines 

 so B-Spline basis matrix 

 

 

 

 

 B-Spline blending functions 
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NonUniform NonRational B-Splines 

 the knot-value sequence is a 
nondecreasing sequence 

 allow multiple knot and the number 
of identical parameter is the 
multiplicity 

 Ex. (0,0,0,0,1,1,2,3,4,4,5,5,5,5) 

 so 
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NonUniform NonRational B-Splines 

 where        is jth-order blending 
function for weighting control point 
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Knot Multiplicity & Continuity 

 since      is within the convex hull of 
    ,    , and 

 if       ,      is within the convex hull of 
    ,    , and     and the convex hull of 
    ,    , and   ,so it will lie on 

 if             ,      will lie on 

 if                  ,      will lie on both 
and   , and the curve becomes broken 
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Knot Multiplicity & Continuity 

 multiplicity 1 : C2 continuity 

 multiplicity 2 : C1 continuity 

 multiplicity 3 : C0 continuity 

 multiplicity 4 : no continuity 



NURBS: 
NonUniform Rational B-Splines 

 rational 

     ,      , and      are defined as the ratio 
of two cubic polynomials 

 rational cubic polynomial curve 
segments are ratios of polynomials 

 

 

 can be Bézier, Hermite, or B-Splines 
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Parametric Bi-Cubic Surfaces 

 parametric cubic curves are 

 so, parametric bi-cubic surfaces are  

 

 if we allow the points in    to vary in 
3D along some path, then 

 

 since      are cubics 
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Parametric Bi-Cubic Surfaces 

 so 
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Hermite Surfaces 
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Bézier Surfaces 
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Normals to Surfaces 
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