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The Utah Teapot
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http://en.wikipedia.org/wiki/Utah_teapot
http://www.sjbaker.org/teapot/



Mathematical Curve Representation

Explicit y=f(x)
B what if the curve is not a function,

e.g., a circle?

Implicit g(x,y)=0
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Parametric (x(u),y(u)) =
B For the circle:




Recall: Plane Equation

Ax+By+Cz+D=0

B and (A B,C) means the normal vector

so, given pointspk,, P, and P, on the plane
(A,B,C)=BP, xPP,

what happened if (A B,C)=(0,0,0) ?

the distance from a vertex (x,vy,z) to the
plane is Ax+By+Cz+D
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Parametric Polynomial Curves

We will use parametric curves where
the functions are all polynomials in
the parameter. _

x(u)=> au"

y(u) = Zbkuk
Advantages:

B easy (and efficient) to compute
B infinitely differentiable




Parametric Cubic Curves

Fix n=3

he cubic polynomials that define a
curve segment Q) =[x(t) y() z@)] are
of the form

x(t)=at’+bt’+ct+d,,

3 2
y(t)=at"+bt°+ct+d,,
z)=at’+bt’+ct+d, 0<t<l




Parametric Cubic Curves

[he curve segment can be rewrite as

QM) =[x(t) y@) z(t)]' =CeT

where T=[t° t* t 1]

C=la b cc o0




Tangent Vector

d o d d s
gt 2D =Q 0= [dt TR A Z(t)}
d 2 s

- [3axt2 +2bt+c, 3at+2bt+c, 3at +2bt+c, ]T




Three Types of
Parametric Cubic Curves

Hermite Curves

B defined by two endpoints and two
endpoint tangent vectors

Bézier Curves

B defined by two endpoints and two
control points which control the
endpoint’ tangent vectors

Splines
B defined by four control points




Parametric Cubic Curves

Q(t)=CeT
rewrite the coefficient matrix asC=GeM

B where Mis a 4x4 basis matrix, G is
called the geometry matrix

B SO = Faam
X () My My My My |t
im, m, my, m,|t’
Q(t) _ y(t) _ [Gl Gz G3 G4- 12 22 32 42
2(t) Mg My Mgy My |t
—— m, M, My My, |1

4 endpoints or tangent vectors




Parametric Cubic Curves

Qt)=GeMeT =GeB

where B=M T is called the blending

functions B 1
1.




i P
Hermite Curves :

R
Given the endpoints pand P, and’

tangent vectors at them R, andR,
What is

B Hermite basis matrix M,

B Hermite geometry vector G,

B Hermite blending functions B,

by definition

GH:[Pl P4 R1 R4]




Hermite Curves

since Q0)=P =G, e
Q(l) — 34 :GH o
Q0)=R, =G
Q@)=R, =Gy
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:[Pl P, R R4]:GH'MH°
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Hermite Curves

- —1-1 - —_

SO 01 0 3 2 -3 0 1
0 1 0 2 -2 3 0 0

MH: =
0111 1 -2 1 0
1100/ |1 -100

and Q(t)=G, eM_ T =G, ¢B,

B, =[2t°—3t°+1 —2t°+3t> -2+t t*—t?[




Computing a point

Given two endpointskP andP, and two
tangent vectors at them R, andR,

SO

Q(t):[P1 P R R4] 1
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Bézier Curves

Given the endpoints pand p, and two
control points P, and P which
determine the endpomts tangent
vectors, such that R =Q'(0)=3(P,-P)

R, =Q'(1) =3(F, = F,)

What is

B Bézier basis matrix M;

B Bézier geometry vector G,

B Bézier blending functions B,




Bézier Curves

by definition G,=[R, P, P, P,]
then GH:[Pl I:)4 R1 R4]

1 0 -3 0
0O 0 3 O

:[Pl P, F P4]‘O 0 0 -3 =Gg oM
01 0 3

SO Q(t)=G,eM, T =(GyeM_)eM,eoT
=Gge(MgoeM,)eT =GgeMyeT




Bézier Curves

and -1 3 -3 1]

= 3 -6 3 0

B HB H _3 3 O O

B, 1 0 0 0
1 Q(t) #(1—t)°P +3t(L—t)2P, +3t*(L-t)P, +t°P,

B, Ala-t)° 3ta-t)® 32@a-t) t*f

\

Bernstein polynomials
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Bernstein Polynomials

[he coefficients of the control points
are a set of functions called the
Bernstein polynomials: Q)= Zb(t)P

B, For degree 3, we have: p ) (1- t)

1 b, (t) = 3t(1—t)?
b, (t) =3t*(1-t)

0 >




Bernstein Polynomials

Useful properties on the interval [0,1]:
B each is between 0 and 1
B sum of all four is exact 1

[0 a.k.a., a “partition of unity”

[hese together imply that the curve
lines within the convex hull of its
control points.




Convex Hull
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Subdividing Bezier Curves

Qt)=@A1-t)°P +3t(A-t)°P, +3At*(1-t)P, +t°P,
How to draw the curve ?
How to convert it to be line-segments ?




Subdividing Bezier Curves
(de Casteljau’s algorithm)

Qt)=@A1-t)°P +3t(A-t)°P, +3At*(1-t)P, +t°P,
How to draw the curve ?
How to convert it to be line-segments ?

: 3 3 1
Q()_8 8P+8P+8P
1,11 1 1,1 1
—E(E(Z(P+P2)+§(P2+P3))+§(E(P3+P4)+E(P2+P3)))




Display Bezier Curves

DisplayBezier(P1,P2,P3,P4)
begin
if (FlatEnough(P1,P2,P3,P4))
Line(P1,P4);
else P
Subdivide(P[])=>L[],R[] 2
DisplayBezier(L1,L2,L3,L4);
DisplayBezier(R1,R2,R3,R4);

end;




Testing for Flatness

Compare total length of control
polygon to length of line connecting
endpoints

P,

‘H_P2‘+‘P2_I:):J, +‘P3_P4‘ <lic

‘Pl_P4

R




What do we want for a curve?

Local control
Interpolation
Continuity




Local Control

One problem with Bezier curve is that every
control points affect every pomt on the
curve (except for en fpomts Moving a
single control point affects the whole curve.
We'd like to have
ocal control, that is,
nave each control
hoint affect some
well-defined
neighborhood
around that point.




Interpolation

Bézier curves are approximating. The curve

does not necessarily pass through all the
control points. We’d like to have a curve

that is interpolating, that is, that always
passes through every control points.




Continuity
between Curve Segments
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Continuity
between Curve Segments

G° geometric continuity
B two curve segments join together

Gl geometric continuity

B the directions (but not necessarily the
magnitudes) of the two segments’
tangent vectors are equal at a join point




Continuity
between Curve Segments

C! continuous

B the tangent vectors of the two cubic
curve segments are equal (both
directions and magnitudes) at the
segments’ join point

Ht
t
t

C" continuous

ne direction and magnitude of d"/dt"[Q(t)]
nrough the nth derivative are equal at

ne join point




Continuity
between Curve Segments

y(t) join point

Co

> x(t)




Continuity
between Curve Segments

y(t) TV,

» X(t)




Bézier Curves — Splines

Bézier curves have C-infinity continuity on
their interiors, but we saw that they do not
exhibit local control or interpolate their
control points.

It is possible to define points that we want
to interpolate, and then solve for the Bézier
control points that will do the job.

But, you will need as many control points
as interpolated points -> high order
polynomials -> wiggly curves. (And you still
won’'t have local control.)




Bézier Curves — Splines

We will splice together a curve from
individual Bezier segments. We call
these curves splines.

When splicing Bézier together, we
need to worry about continuity.




Ensuring CO continuity

Suppose we have a cubic Bézier
defined by (v,.V,,V,,V,), and we want to
attach another curve W, W, W,;,W,) to it,
so that there is C° continuity at the

joint.
C*:Q ®=0Q,(0)

What constraint(s) does this place on
(W, W, W, W, ) 2

QM=Q, 0=V, =W,




Ensuring C! continuity

Suppose we have a cubic Bézier
defined by (v,.V,,V,,V,), and we want to
attach another curve W, W, W,;,W,) to it,
so that there is C! continuity at the

joint. C’:Q,(M)=Qq,(0)
C:Q () =Q,(0)
What constraint(s) does this place on
(W, W, Wy, W,) 2
QM=Q,0)=V, =W,

QD)=Q,0) =V, -V, =W, -W,



The C! Bézier Spline

How then could we construct a curve
passing through a set of pointsP...P?

S

P
P 4
B Wé can specify the Bézier control points directly,

or we can devise a scheme for placing them
automatically...




Catmull-Rom Spline

If we set each derivative to be one half of
the vector between the previous and next
controls, we mull-Rom Splihe.

This leads




Catmull-Rom Basis Matrix

Q(t) =G oM, oT

-3 1

-1 3

3

—1 tz
1

5 4

1211 0

Q(t)=[|31 P, R P]




Ensuring C2 continuity

Suppose we have a cubic Bézier
defined by (v,.V,,V,,V,), and we want to
attach another curve W, W, W,;,W,) to it,
so that there is C2 continuity at the
joint.

QD=Qy0)=V,=W,

Q\;(l) :Q\;\/(O):>V4 _Vs :Wz _Wl

QM) =QL(0)=>V, -2V, +V, =W, —2W, +W,

U

W, =V, —4V, +4V,



B-Spline

OO0 Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-frames
in order to build a C? continuous spline.




W, =V, —4V, +4V,
=2(2V, _Vs) - (2V3 -V,)
= 2W, - B,




B-Spline

0 Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-frames

in order to build a C? continuous spline.

V
2
B ©




B-Spline

OO0 Instead of specifying the Bézier control points
themselves, let’s specify the corners of the A-frames
in order to build a C? continuous spline.

W4
1 2 1
1 25[814'5(82_81)"‘82+§(83_Bz))

= 1
B, B, Vv, :Bz+§(Bs_Bz)




B-Spline

OO0 Instead of specifying the Bézier control points

themselves, let’s specify the corners of the A-frames
in order to build a C? continuous spline.

B,

W, [0 These are called B-

Splines. The starting

v set of points are called
B, 3 de Boor points.




local control

¢ Knot

€ Control point
> X(t)




Uniform NonRational B-Splines

cubic B-Spline
B has m+1control points P,P,...,P. ,m=>3

B has m-2cubic polynomial curve segments

Q:,Q,,..., Q.
uniform

B the knots are spaced at equal intervals
of the parametert

non-rational
B not rational cubic polynomial curves




Uniform NonRational B-Splines

curve segment Q is defined by points
PP, B4R, thus

B-Spline geometry matrix

GBsi :[Pi—3 Pi—2 I:)'—1 Pu]’ 3<i<m

if T =[t-t)° -t @-t) 1f

then Qi(t)=Gg, Mg, oT;, t<t<t,




Uniform NonRational B-Splines

so B-Spline basis matrix
-1 3 -3 1]
113 -6 0 4
* 6/-3 3 3 1
1 0 0 O]

B-Spline blending functions

BBS:%[(l-t)S -6t +4 —3t°+3t2+3t+1 t*], 0<t<1




NonUniform NonRational B-Splines

the knot-value sequence is a
nondecreasing sequence

allow multiple knot and the number

of identical parameter is the
multiplicity

®m Ex. (0,0,0,0,1,1,2,3,4,4,5,5,5,5)

SO

Qt)=R ;0B 3, (1)+R B, () +R eB, (1) +F B ,(t)




NonUniform NonRational B-Splines

where B, (t) is jth-order blending
function for weighting control pointP

1, t<t<t,
Bi,l(t):{ =

0, otherwise
| L+2 —1
B, (1) = —- B.l(t>+t —B..,()
|+1 i 1+2 i+1
—1
B, 5(t) = —— B ,(t)+ ha—l g, .
|+2 ti tr+3 ti-+1 §
t- tI |+ —1
I 4 (t) — _t BI 3(t) t : _t Bi+l,3(t)

|+3 I i+4 i+1




Knot Multiplicity & Continuity

since Q(t)is within the convex hull of
Ps, P, and B,
ift, =t,, Q) is within the convex hull of

P., P, and P_and the convex hull of
P2, B4, and B,so it will lie on P P,

ift =t =t_, Qt)will lie onP_,

ift =ti+1—ti+z =1, Q(t)will lie on both B
and P, and the curve becomes broken




Knot Multiplicity & Continuity

mu
mu
mu
mu

ti
ti
ti
ti

O O 0O O

icity 1 :
icity 2
icity 3 :
Icity 4 :

C2 continuity
C! continuity
CO continuity
no continuity




NURBS:
NonUniform Rational B-Splines

rational

m X(t), y(t), and z(t)are defined as the ratio
of two cubic polynomials

rational cubic polynomial curve

segments are ratios of polynomials

=g YO0 20-20

can be Bézier, Hermite, or B-Splines




Parametric Bi-Cubic Surfaces

parametric cubic curves are Q(t)=GeM oT
SO, parametric bi-cubic surfaces are
Q(s)=GeM eS

if we allow the points in G to vary in
3D along some path, then

Q(s.t)=[G,(t) G,(t) G,(t) G,(t)]eMeS
since G,(t)are cubics
G;(t)=G,eM T, whereG, :[gil O  Ois gi4]




Parametric Bi-Cubic Surfaces

SO
_gll g21
Q(S t):TT.MT. ng gZZ
013 U3
gl4 g24

31
s>
Us3
U4

Q41
042
J43

944

oM oS

:TTQI\/ITOGOMOS, 0<s5,t<1




Hermite Surfaces




Bézier Surfaces




Normals to Surfaces

iQ(S,t)zTT eM'eGeM .ES
0S 0S

—TTeM"eGeMe[3s> 25 1 0f

O O (+7 T
—Q(s,t)=—\T JoeM eGelM eS
A E0=5")

=[3t> 2t 1 0f eMTeGeMesS

%, %,
—Q(s, 1) x—Q(s,1) normal vector
oS ot




