Computer Graphics

Bing-Yu Chen National Taiwan University

Curves and Surfaces

- Mathematical Curve Representation
- Parametric Cubic Curves
- □ Parametric Bi-Cubic Surfaces

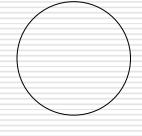
The Utah Teapot

http://en.wikipedia.org/wiki/Utah_teapot

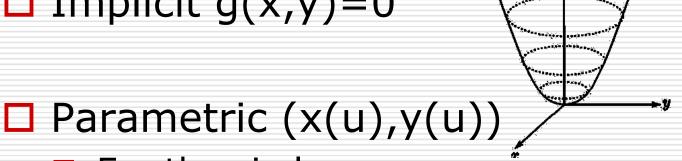
http://www.sjbaker.org/teapot/

Mathematical Curve Representation

- \square Explicit y=f(x)
 - what if the curve is not a function, e.g., a circle?



 \square Implicit q(x,y)=0



For the circle:

Recall: Plane Equation

- - \blacksquare and (A,B,C) means the normal vector
 - \blacksquare so, given points P_1 , P_2 , and P_3 on the plane
 - $(A, B, C) = P_1 P_2 \times P_1 P_3$
 - what happened if (A, B, C) = (0,0,0)?
 - the distance from a vertex (x, y, z) to the plane is $d = \frac{Ax + By + Cz + D}{\sqrt{A^2 + B^2 + C^2}}$

Parametric Polynomial Curves

We will use parametric curves where the functions are all polynomials in the parameter.

$$x(u) = \sum_{k=0}^{n} a_k u^k$$

$$y(u) = \sum_{k=0}^{n} b_k u^k$$

- Advantages:
 - easy (and efficient) to compute
 - infinitely differentiable

Parametric Cubic Curves

- \square Fix n=3
- ☐ The cubic polynomials that define a curve segment $Q(t) = [x(t) \ y(t) \ z(t)]^T$ are of the form

$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x,$$

$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y,$$

$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z, \quad 0 \le t \le 1.$$

Parametric Cubic Curves

The curve segment can be rewrite as

$$Q(t) = [x(t) \quad y(t) \quad z(t)]^{\mathrm{T}} = C \bullet T$$

 \square where $T = [t^3 \quad t^2 \quad t \quad 1]^T$

$$C = \begin{bmatrix} a_x & b_x & c_x & d_x \\ a_y & b_y & c_y & d_y \\ a_z & b_z & c_z & d_z \end{bmatrix}$$

Tangent Vector

$$\frac{d}{dt}Q(t) = Q'(t) = \begin{bmatrix} \frac{d}{dt}x(t) & \frac{d}{dt}y(t) & \frac{d}{dt}z(t) \end{bmatrix}^{T}$$

$$= \frac{d}{dt}C \bullet T = C \bullet \begin{bmatrix} 3t^{2} & 2t & 1 & 0 \end{bmatrix}^{T}$$

$$= \begin{bmatrix} 3a_{x}t^{2} + 2b_{x}t + c_{x} & 3a_{y}t^{2} + 2b_{y}t + c_{y} & 3a_{z}t^{2} + 2b_{z}t + c_{z} \end{bmatrix}^{T}$$

Three Types of Parametric Cubic Curves

- ☐ Hermite Curves
 - defined by two endpoints and two endpoint tangent vectors
- □ Bézier Curves
 - defined by two endpoints and two control points which control the endpoint' tangent vectors
- Splines
 - defined by four control points

Parametric Cubic Curves

- \square $Q(t) = C \bullet T$
- \square rewrite the coefficient matrix as $C = G \bullet M$
 - where M is a 4x4 basis matrix, G is called the geometry matrix
 - SO

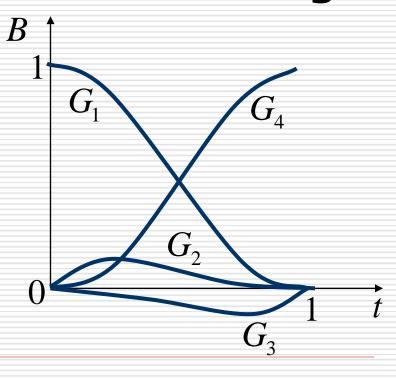
$$Q(t) = \begin{bmatrix} x(t) \\ y(t) \\ z(t) \end{bmatrix} = \begin{bmatrix} G_1 & G_2 & G_3 & G_4 \end{bmatrix} \begin{bmatrix} m_{11} & m_{21} & m_{31} & m_{41} \\ m_{12} & m_{22} & m_{32} & m_{42} \\ m_{13} & m_{23} & m_{33} & m_{43} \\ m_{14} & m_{24} & m_{34} & m_{44} \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \end{bmatrix}$$

4 endpoints or tangent vectors

Parametric Cubic Curves

where $B = M \bullet T$ is called the **blending**

functions



P_4 R_4

Hermite Curves

- \square Given the endpoints P_1 and P_4 and tangent vectors at them R_1 and R_4
- What is
 - **Hermite basis matrix** $M_{\rm H}$
 - **Hermite geometry vector** G_{H}
 - **Hermite blending functions** B_{H}
- by definition

$$G_{\mathrm{H}} = \begin{bmatrix} P_1 & P_4 & R_1 & R_4 \end{bmatrix}$$

Q(t) P_4 R_4 P_1

Hermite Curves

Since
$$Q(0) = P_1 = G_H \cdot M_H \cdot \begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}^T$$

$$Q(1) = P_4 = G_H \cdot M_H \cdot \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}^T$$

$$Q'(0) = R_1 = G_H \cdot M_H \cdot \begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}^T$$

$$Q'(1) = R_4 = G_H \cdot M_H \cdot \begin{bmatrix} 3 & 2 & 1 & 0 \end{bmatrix}^T$$

$$G_H = \begin{bmatrix} P_1 & P_4 & R_1 & R_4 \end{bmatrix} = G_H \cdot M_H \cdot \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Hermite Curves

$$M_{H} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix}$$

$$\square$$
 and $Q(t) = G_H \bullet M_H \bullet T = G_H \bullet B_H$

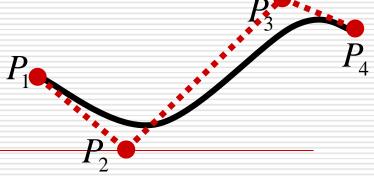
$$B_{\rm H} = \begin{bmatrix} 2t^3 - 3t^2 + 1 & -2t^3 + 3t^2 & t^3 - 2t^2 + t & t^3 - t^2 \end{bmatrix}^{\rm T}$$

Computing a point

 \square Given two endpoints P_1 and P_4 and two tangent vectors at them R_1 and R_4

$$Q(t) = \begin{bmatrix} P_4 & R_4 \\ P_1 & P_4 & R_1 \end{bmatrix} \begin{bmatrix} 2 & -3 & 0 & 1 \\ -2 & 3 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \\ 1 \end{bmatrix}$$

Bézier Curves



☐ Given the endpoints P_1 and P_2 and two control points P_2 and P_3 which determine the endpoints' tangent vectors, such that $P_1 = Q'(0) = 3(P_2 - P_1)$

$$R_4 = Q'(1) = 3(P_4 - P_3)$$

- What is
 - **■** Bézier basis matrix $M_{\rm B}$
 - **Bézier geometry vector** $G_{\rm B}$
 - **Bézier blending functions** B_{R}

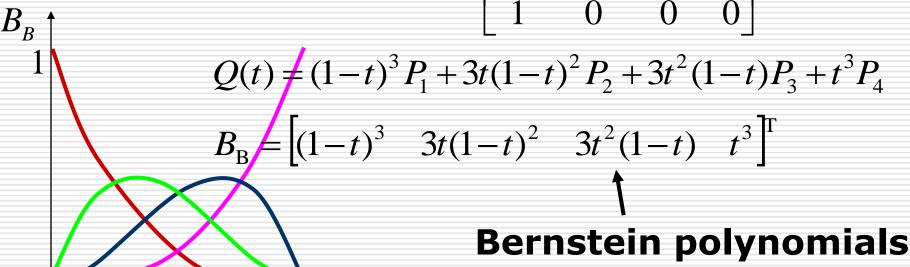
Bézier Curves

- \square by definition $G_{\rm B} = \begin{bmatrix} P_1 & P_2 & P_3 & P_4 \end{bmatrix}$
- \square then $G_{H} = \begin{bmatrix} P_1 & P_4 & R_1 & R_4 \end{bmatrix}$

$$= \begin{bmatrix} P_1 & P_2 & P_3 & P_4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -3 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & -3 \end{bmatrix} = G_{\rm B} \bullet M_{\rm HB}$$

Bézier Curves

$$M_{\rm B} = M_{\rm HB} \bullet M_{\rm H} = \begin{bmatrix} 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$



Bernstein Polynomials

☐ The coefficients of the control points are a set of functions called the ⁿ

Bernstein polynomials: $Q(t) = \sum_{i=0}^{n} b_i(t) P_i$

B_B \square For degree 3, we have:

$$b_0(t) = (1-t)^3$$
$$b_1(t) = 3t(1-t)^2$$

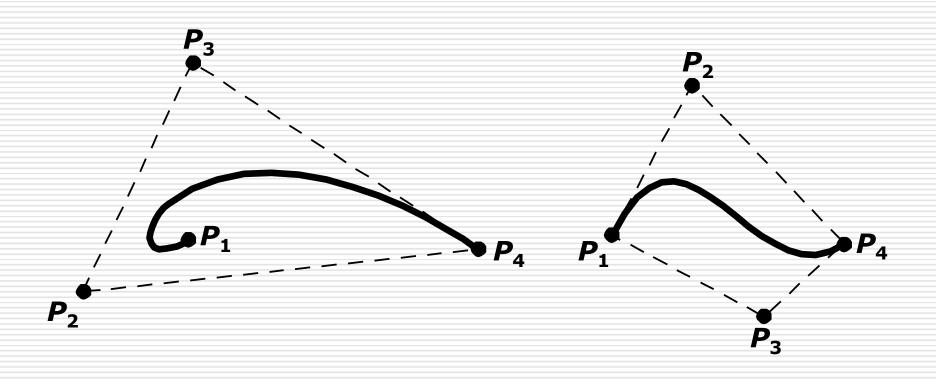
$$b_2(t) = 3t^2(1-t)$$

$$b_3(t) = t^3$$

Bernstein Polynomials

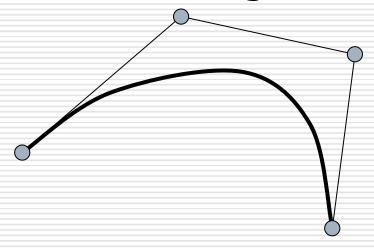
- □ Useful properties on the interval [0,1]:
 - each is between 0 and 1
 - sum of all four is exact 1
 - a.k.a., a "partition of unity"
- These together imply that the curve lines within the convex hull of its control points.

Convex Hull



Subdividing Bézier Curves

- □ How to draw the curve ?
- How to convert it to be line-segments?



Subdividing Bézier Curves (de Casteljau's algorithm)

$$Q(t) = (1-t)^3 P_1 + 3t(1-t)^2 P_2 + 3t^2(1-t)P_3 + t^3 P_4$$

- ☐ How to draw the curve?
- How to convert it to be line-segments?

$$Q(\frac{1}{2}) = \frac{1}{8}P_1 + \frac{3}{8}P_2 + \frac{3}{8}P_3 + \frac{1}{8}P_4$$

$$= \frac{1}{2}(\frac{1}{2}(\frac{1}{2}(P_1 + P_2) + \frac{1}{2}(P_2 + P_3)) + \frac{1}{2}(\frac{1}{2}(P_3 + P_4) + \frac{1}{2}(P_2 + P_3)))$$

Display Bézier Curves

```
DisplayBezier(P1,P2,P3,P4)
begin
   if (FlatEnough(P1,P2,P3,P4))
      Line(P1,P4);
   else
      Subdivide(P[])=>L[],R[]
      DisplayBezier(L1,L2,L3,L4);
      DisplayBezier(R1,R2,R3,R4);
end;
```

Testing for Flatness

Compare total length of control polygon to length of line connecting endpoints

$$\frac{|P_{1}-P_{2}|+|P_{2}-P_{3}|+|P_{3}-P_{4}|}{|P_{1}-P_{4}|} < 1 + \varepsilon$$

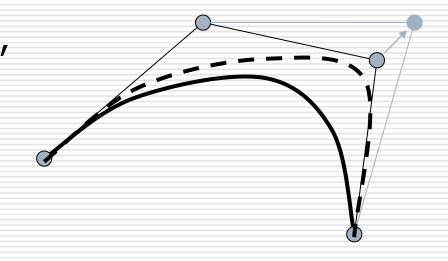
$$P_{1}$$

What do we want for a curve?

- Local control
- □ Interpolation
- Continuity

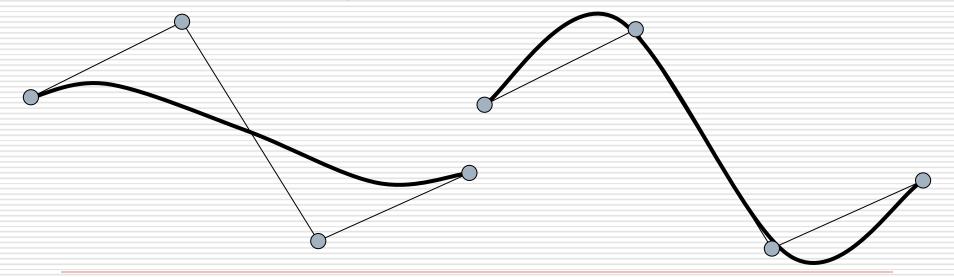
Local Control

- One problem with Bézier curve is that every control points affect every point on the curve (except for endpoints). Moving a single control point affects the whole curve.
- We'd like to have local control, that is, have each control point affect some well-defined neighborhood around that point.

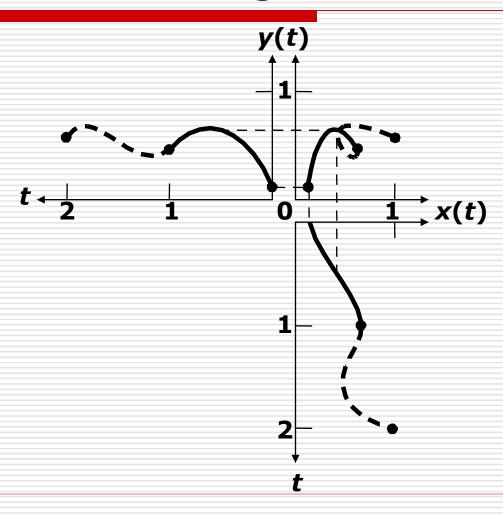


Interpolation

Bézier curves are approximating. The curve does not necessarily pass through all the control points. We'd like to have a curve that is interpolating, that is, that always passes through every control points.



Continuity between Curve Segments



Continuity between Curve Segments

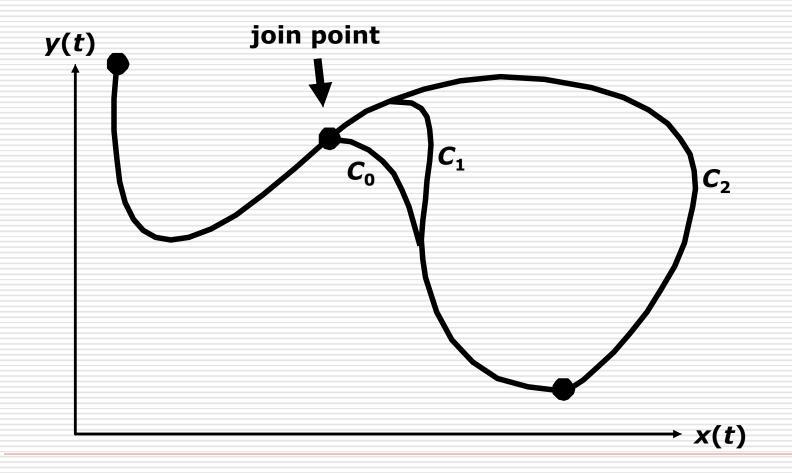
- \square G^0 geometric continuity
 - two curve segments join together

- \square G^1 geometric continuity
 - the directions (but not necessarily the magnitudes) of the two segments' tangent vectors are equal at a join point

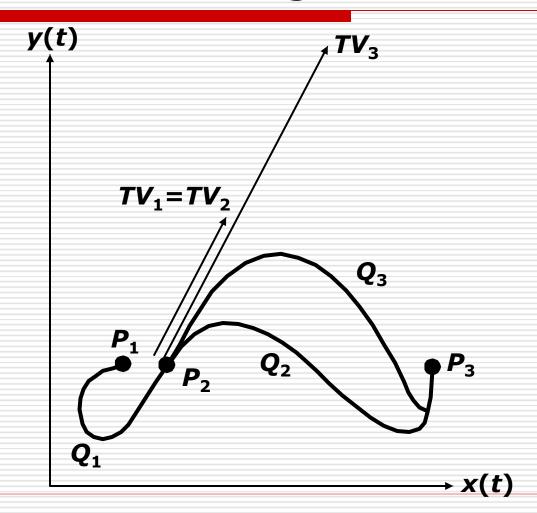
Continuity between Curve Segments

- \square C^1 continuous
 - the tangent vectors of the two cubic curve segments are equal (both directions and magnitudes) at the segments' join point
- \square C^n continuous
 - the direction and magnitude of $d^n/dt^n[Q(t)]$ through the *n*th derivative are equal at the join point

Continuity between Curve Segments



Continuity between Curve Segments



Bézier Curves → Splines

- Bézier curves have C-infinity continuity on their interiors, but we saw that they do not exhibit local control or interpolate their control points.
- It is possible to define points that we want to interpolate, and then solve for the Bézier control points that will do the job.
- But, you will need as many control points as interpolated points -> high order polynomials -> wiggly curves. (And you still won't have local control.)

Bézier Curves → Splines

- We will splice together a curve from individual Bézier segments. We call these curves splines.
- When splicing Bézier together, we need to worry about continuity.

Ensuring C⁰ continuity

☐ Suppose we have a cubic Bézier defined by (V_1, V_2, V_3, V_4) , and we want to attach another curve (W_1, W_2, W_3, W_4) to it, so that there is C^0 continuity at the joint.

 $C^0: Q_V(1) = Q_W(0)$

□ What constraint(s) does this place on (W_1, W_2, W_3, W_4) ?

$$Q_V(1) = Q_W(0) \Longrightarrow V_4 = W_1$$

Ensuring C¹ continuity

□ Suppose we have a cubic Bézier defined by (V_1, V_2, V_3, V_4) , and we want to attach another curve (W_1, W_2, W_3, W_4) to it, so that there is C^1 continuity at the joint. $C^0: Q_V(1) = Q_W(0)$

$$C^1: Q'_V(1) = Q'_W(0)$$

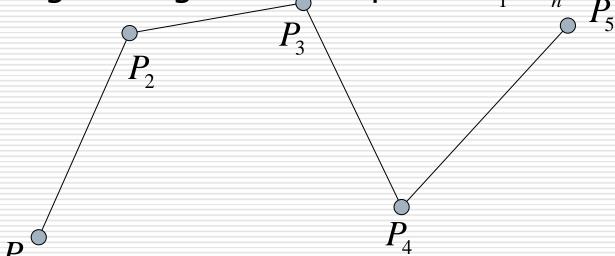
□ What constraint(s) does this place on (W_1, W_2, W_3, W_4) ?

$$Q_V(1) = Q_W(0) \Rightarrow V_4 = W_1$$

$$Q'_{V}(1) = Q'_{W}(0) \Rightarrow V_{4} - V_{3} = W_{2} - W_{1}$$

The C¹ Bézier Spline

☐ How then could we construct a curve passing through a set of points $P_1...P_n$?



We can specify the Bézier control points directly, or we can devise a scheme for placing them automatically...

Catmull-Rom Spline

□ If we set each derivative to be one half of the vector between the previous and next controls, we get a Catmull-Rom Spline.

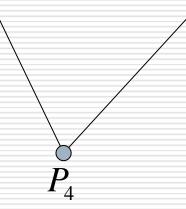
☐ This leads/to:

$$V_1 = P_2$$

$$V_2 = P_2 + \frac{1}{6}(P_3 - P_1)$$

$$V_3 = P_3 - \frac{1}{6}(P_4 - P_2)$$

$$V_4 = P_3$$



Catmull-Rom Basis Matrix

$$Q(t) = G_{\rm B} \bullet M_{\rm B} \bullet T$$

$$= G_{\rm B} \bullet \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \bullet T \quad G_{\rm B} = \begin{bmatrix} V_1 \\ V_2 \\ V_3 \\ V_4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ \frac{-1}{6} & 1 & \frac{1}{6} & 0 \\ 0 & \frac{1}{6} & 1 & \frac{-1}{6} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} P_1 \\ P_2 \\ P_3 \\ P_4 \end{bmatrix}$$

$$Q(t) = \begin{bmatrix} P_1 & P_2 & P_3 & P_4 \end{bmatrix} \frac{1}{2} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 2 & -5 & 4 & -1 \\ -1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} t^3 \\ t^2 \\ t \end{bmatrix}$$

Ensuring C² continuity

□ Suppose we have a cubic Bézier defined by (V_1, V_2, V_3, V_4) , and we want to attach another curve (W_1, W_2, W_3, W_4) to it, so that there is \mathbb{C}^2 continuity at the joint.

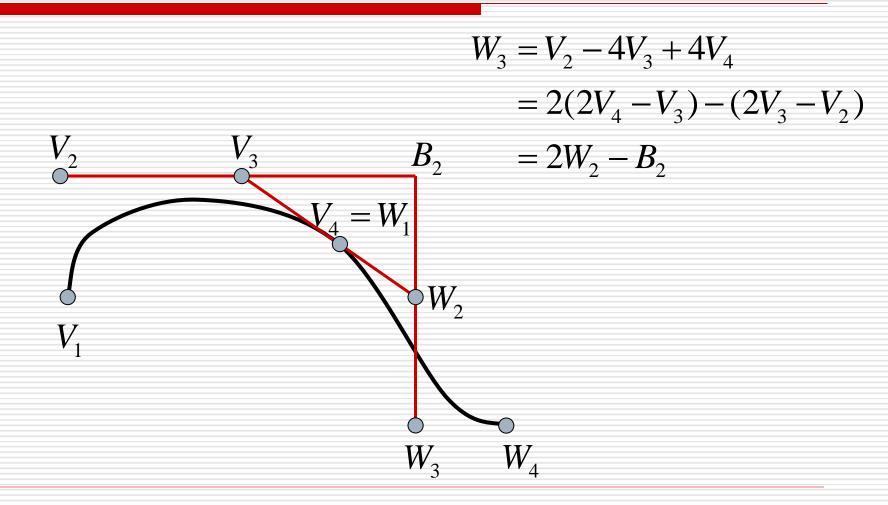
$$Q_{V}(1) = Q_{W}(0) \Rightarrow V_{4} = W_{1}$$

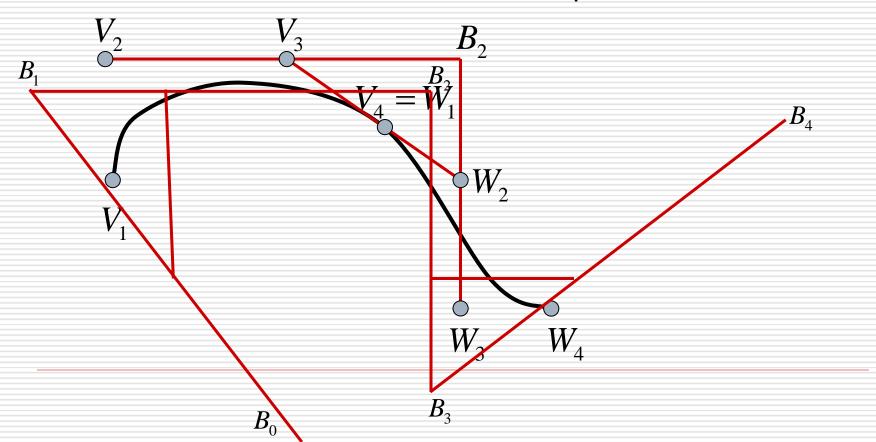
$$Q'_{V}(1) = Q'_{W}(0) \Rightarrow V_{4} - V_{3} = W_{2} - W_{1}$$

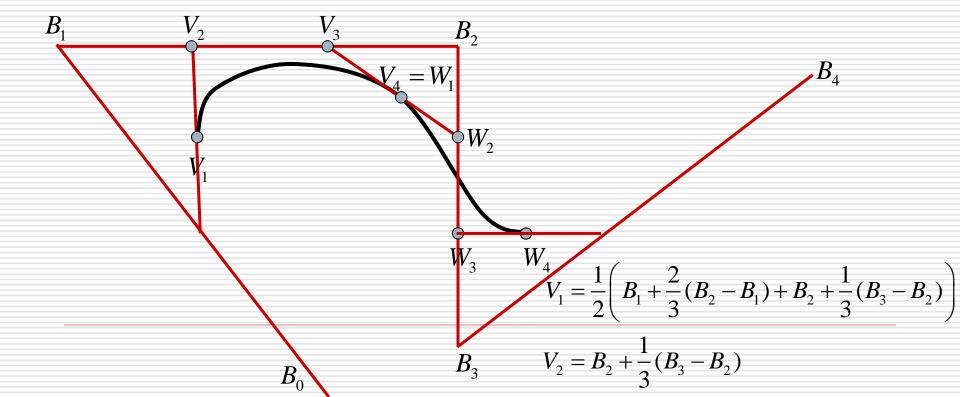
$$Q''_{V}(1) = Q''_{W}(0) \Rightarrow V_{2} - 2V_{3} + V_{4} = W_{1} - 2W_{2} + W_{3}$$

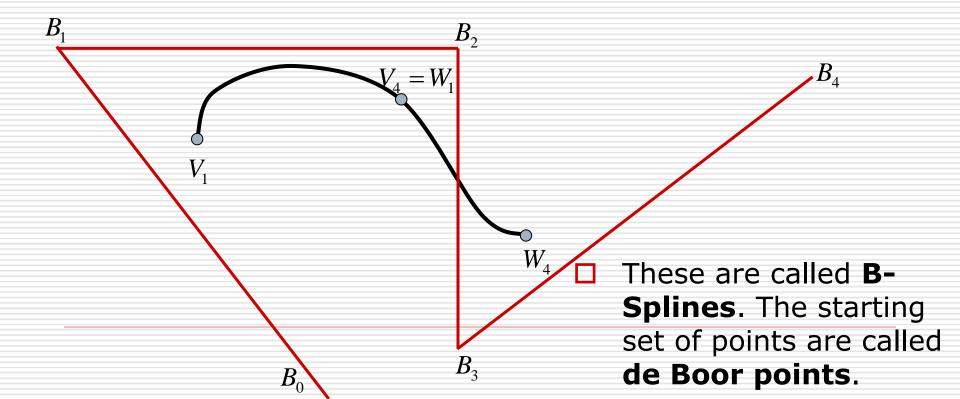
$$\downarrow \downarrow$$

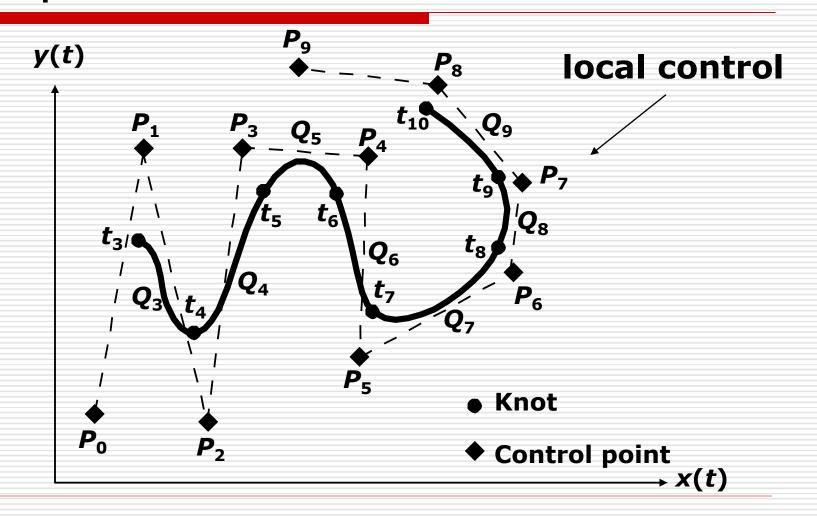
$$W_3 = V_2 - 4V_3 + 4V_4$$











Uniform NonRational B-Splines

- cubic B-Spline
 - has m+1 control points $P_0, P_1, ..., P_m, m \ge 3$
 - has m-2 cubic polynomial curve segments $Q_3, Q_4, ..., Q_m$
- uniform
 - the knots are spaced at equal intervals of the parameter t
- non-rational
 - not rational cubic polynomial curves

Uniform NonRational B-Splines

- \square curve segment Q_i is defined by points $P_{i-3}, P_{i-2}, P_{i-1}, P_i$, thus
- B-Spline geometry matrix

$$G_{Bs_i} = [P_{i-3} \quad P_{i-2} \quad P_{i-1} \quad P_i], \quad 3 \le i \le m$$

- $\square \text{ if } T_i = \begin{bmatrix} (t t_i)^3 & (t t_i)^2 & (t t_i) & 1 \end{bmatrix}^{\Gamma}$
- \square then $Q_i(t) = G_{Bs_i} \bullet M_{Bs} \bullet T_i$, $t_i \le t \le t_{i+1}$

Uniform NonRational B-Splines

□ so B-Spline basis matrix

$$M_{\text{Bs}} = \frac{1}{6} \begin{bmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 0 & 4 \\ -3 & 3 & 3 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

B-Spline blending functions

$$B_{\text{Bs}} = \frac{1}{6} \begin{bmatrix} (1-t)^3 & 3t^3 - 6t^2 + 4 & -3t^3 + 3t^2 + 3t + 1 & t^3 \end{bmatrix}^{\text{T}}, \quad 0 \le t \le 1$$

NonUniform NonRational B-Splines

- the knot-value sequence is a nondecreasing sequence
- allow multiple knot and the number of identical parameter is the multiplicity
 - Ex. (0,0,0,0,1,1,2,3,4,4,5,5,5,5)
- ☐ SO

$$Q_{i}(t) = P_{i-3} \bullet B_{i-3,4}(t) + P_{i-2} \bullet B_{i-2,4}(t) + P_{i-1} \bullet B_{i-1,4}(t) + P_{i} \bullet B_{i,4}(t)$$

NonUniform NonRational B-Splines

 \square where $B_{i,j}(t)$ is jth-order blending function for weighting control point P_i

$$B_{i,1}(t) = \begin{cases} 1, & t_i \le t \le t_{i+1} \\ 0, & \text{otherwise} \end{cases}$$

$$B_{i,2}(t) = \frac{t - t_i}{t_{i+1} - t_i} B_{i,1}(t) + \frac{t_{i+2} - t}{t_{i+2} - t_{i+1}} B_{i+1,1}(t)$$

$$B_{i,3}(t) = \frac{t - t_i}{t_{i+2} - t_i} B_{i,2}(t) + \frac{t_{i+3} - t}{t_{i+3} - t_{i+1}} B_{i+1,2}(t)$$

$$B_{i,4}(t) = \frac{t - t_i}{t_{i+3} - t_i} B_{i,3}(t) + \frac{t_{i+4} - t}{t_{i+4} - t_{i+1}} B_{i+1,3}(t)$$

Knot Multiplicity & Continuity

- □ since $Q(t_i)$ is within the convex hull of P_{i-3} , P_{i-2} , and P_{i-1}
- \square if $t_i = t_{i+1}$, $Q(t_i)$ is within the convex hull of P_{i-3} , P_{i-2} , and P_{i-1} and the convex hull of P_{i-2} , P_{i-1} , and P_i , so it will lie on $\overline{P_{i-2}P_{i-1}}$
- \Box if $t_i = t_{i+1} = t_{i+2}$, $Q(t_i)$ will lie on P_{i-1}
- \square if $t_i = t_{i+1} = t_{i+2} = t_{i+3}$, $Q(t_i)$ will lie on both P_{i-1} and P_i , and the curve becomes broken

Knot Multiplicity & Continuity

- \square multiplicity 1 : \mathbb{C}^2 continuity
- \square multiplicity 2 : C^1 continuity
- \square multiplicity 3 : C^0 continuity
- □ multiplicity 4 : no continuity

NURBS: NonUniform Rational B-Splines

- rational
 - \blacksquare x(t), y(t), and z(t) are defined as the ratio of two cubic polynomials
- rational cubic polynomial curve segments are ratios of polynomials

$$x(t) = \frac{X(t)}{W(t)} \quad y(t) = \frac{Y(t)}{W(t)} \quad z(t) = \frac{Z(t)}{W(t)}$$

can be Bézier, Hermite, or B-Splines

Parametric Bi-Cubic Surfaces

- \square parametric cubic curves are $Q(t) = G \bullet M \bullet T$
- □ so, parametric bi-cubic surfaces are $Q(s) = G \cdot M \cdot S$
- ☐ if we allow the points in G to vary in3D along some path, then

$$Q(s,t) = \begin{bmatrix} G_1(t) & G_2(t) & G_3(t) & G_4(t) \end{bmatrix} \bullet M \bullet S$$

 \square since $G_i(t)$ are cubics

$$G_i(t) = G_i \bullet M \bullet T$$
, where $G_i = \begin{bmatrix} g_{i1} & g_{i2} & g_{i3} & g_{i4} \end{bmatrix}$

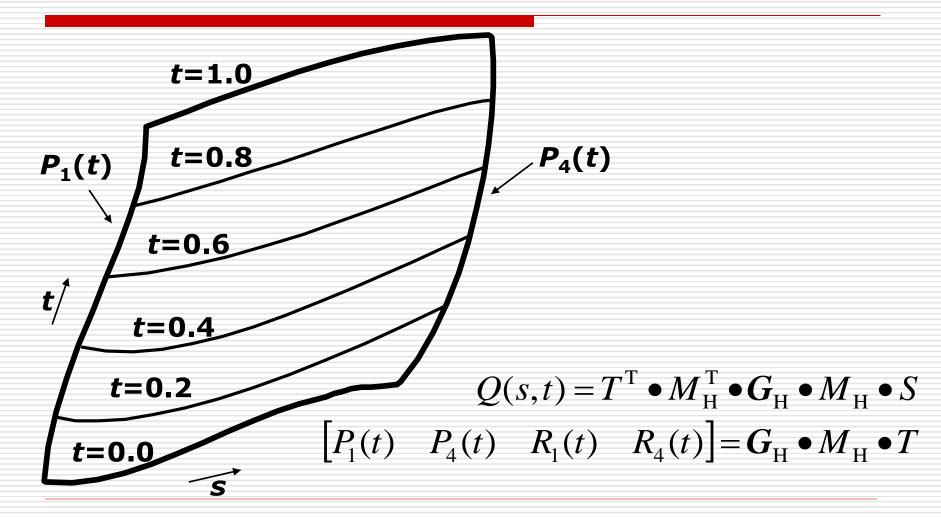
Parametric Bi-Cubic Surfaces

☐ SO

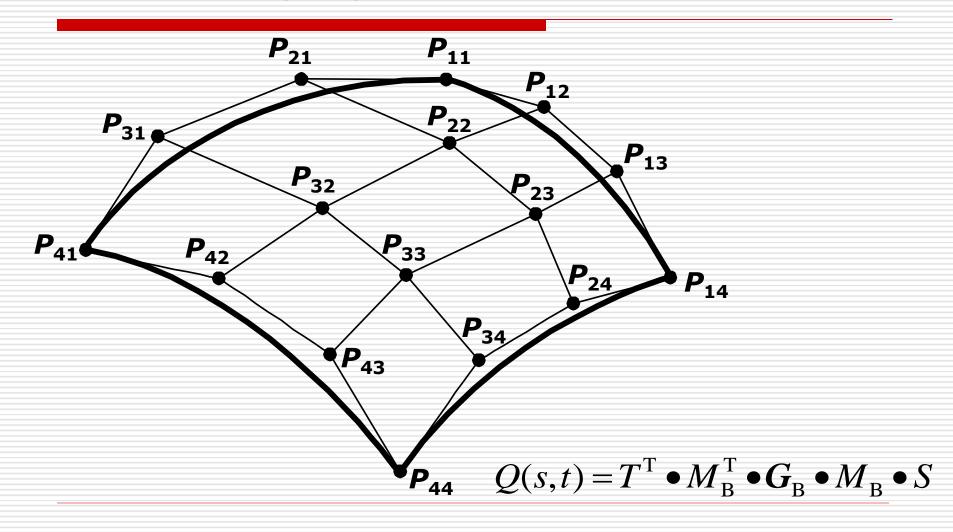
$$Q(s,t) = T^{T} \bullet M^{T} \bullet \begin{bmatrix} \mathbf{g}_{11} & \mathbf{g}_{21} & \mathbf{g}_{31} & \mathbf{g}_{41} \\ \mathbf{g}_{12} & \mathbf{g}_{22} & \mathbf{g}_{32} & \mathbf{g}_{42} \\ \mathbf{g}_{13} & \mathbf{g}_{23} & \mathbf{g}_{33} & \mathbf{g}_{43} \\ \mathbf{g}_{14} & \mathbf{g}_{24} & \mathbf{g}_{34} & \mathbf{g}_{44} \end{bmatrix} \bullet M \bullet S$$

$$= T^{T} \bullet M^{T} \bullet G \bullet M \bullet S, \quad 0 \le s, t \le 1$$

Hermite Surfaces



Bézier Surfaces



Normals to Surfaces

$$\frac{\partial}{\partial s}Q(s,t) = T^{T} \bullet M^{T} \bullet G \bullet M \bullet \frac{\partial}{\partial s}S$$

$$= T^{T} \bullet M^{T} \bullet G \bullet M \bullet \left[3s^{2} \quad 2s \quad 1 \quad 0\right]^{T}$$

$$\frac{\partial}{\partial t}Q(s,t) = \frac{\partial}{\partial t}\left(T^{T}\right) \bullet M^{T} \bullet G \bullet M \bullet S$$

$$= \left[3t^{2} \quad 2t \quad 1 \quad 0\right]^{T} \bullet M^{T} \bullet G \bullet M \bullet S$$

$$\frac{\partial}{\partial s}Q(s,t)\times\frac{\partial}{\partial t}Q(s,t)$$
 — normal vector