
Computer Graphics

Bing-Yu Chen
National Taiwan University

Introduction to OpenGL

 General OpenGL Introduction

 An Example OpenGL Program

 Drawing with OpenGL

 Transformations

 Animation and Depth Buffering

 Lighting

 Evaluation and NURBS

 Texture Mapping

 Advanced OpenGL Topics

 Imaging modified from
Dave Shreiner, Ed Angel, and Vicki Shreiner.

An Interactive Introduction to OpenGL Programming.
ACM SIGGRAPH 2001 Conference Course Notes #54.

& ACM SIGGRAPH 2004 Conference Course Notes #29.

Advanced OpenGL Topics

 Display Lists and Vertex Arrays

 Alpha Blending and Antialiasing

 Using the Accumulation Buffer

 Fog

 Feedback & Selection

 Fragment Tests and Operations

 Using the Stencil Buffer

Immediate Mode versus
Display Listed Rendering

 Immediate Mode Graphics

 Primitives are sent to pipeline and display right
away

 No memory of graphical entities

 Display Listed Graphics

 Primitives placed in display lists

 Display lists kept on graphics server

 Can be redisplayed with different state

 Can be shared among OpenGL graphics contexts

Immediate Mode versus
Display Lists

Immediate Mode

Display Listed

Display

List

Polynomial

Evaluator

Per Vertex

Operations &

Primitive

Assembly

Rasterization
Per Fragment

Operations

Texture

Memor

y

CPU

Pixel

Operations

Frame

Buffer

Display Lists

 Creating a display list
GLuint id;

void init(void)

{

 id = glGenLists(1);

 glNewList(id, GL_COMPILE);

 /* other OpenGL routines */

 glEndList();

}

 Call a created list
void display(void)

{

 glCallList(id);

}

CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Display Lists

 Not all OpenGL routines can be stored in
display lists

 State changes persist,
even after a display list is finished

 Display lists can call other display lists

 Display lists are not editable,
but you can fake it

 make a list (A) which calls other lists (B, C, and D)

 delete and replace B, C, and D, as needed

Display Lists and Hierarchy

 Consider model of a car

 Create display list for chassis

 Create display list for wheel
glNewList(CAR, GL_COMPILE);

 glCallList(CHASSIS);

 glTranslatef(…);

 glCallList(WHEEL);

 glTranslatef(…);

 glCallList(WHEEL);

 …

glEndList();

Advanced Primitives

 Vertex Arrays

 Bernstein Polynomial Evaluators

 basis for GLU NURBS

 NURBS (Non-Uniform Rational B-Splines)

 GLU Quadric Objects

 sphere

 cylinder (or cone)

 disk (circle)

Vertex
Arrays

 Pass arrays of vertices, colors, etc. to
OpenGL in a large chunk
glVertexPointer(3, GL_FLOAT, 0, coords)

glColorPointer(4, GL_FLOAT, 0, colors)

glEnableClientState(GL_VERTEX_ARRAY)

glEnableClientState(GL_COLOR_ARRAY)

glDrawArrays(GL_TRIANGLE_STRIP, 0, numVerts);

 All active arrays are used in rendering

Color

data

Vertex

data

CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Why use
Display Lists or Vertex Arrays?

 May provide better performance than
immediate mode rendering

 Display lists can be shared between
multiple OpenGL context

 reduce memory usage for multi-context
applications

 Vertex arrays may format data for
better memory access

Alpha: the 4th Color
Component

 Measure of Opacity

 simulate translucent objects

 glass, water, etc.

 composite images

 antialiasing

 ignored if blending is not enabled
glEnable(GL_BLEND)

Blending

 Combine pixels with what’s in already

 in the framebuffer

glBlendFunc(src, dst)

Framebuffer

Pixel

(dst)

Blending

Equation

Fragment

(src)

Blended

Pixel

pfr CdstCsrcC




CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Multi-pass Rendering

 Blending allows results from multiple
drawing passes to be combined
together

 enables more complex rendering
algorithms

Example of bump-mapping

done with a multi-pass

OpenGL algorithm

Antialiasing

 Removing the Jaggies

 glEnable(mode)

 GL_POINT_SMOOTH

 GL_LINE_SMOOTH

 GL_POLYGON_SMOOTH

 alpha value computed by computing
sub-pixel coverage

 available in both RGBA and colormap
modes

Accumulation Buffer

 Problems of compositing into color
buffers

 limited color resolution

 clamping

 loss of accuracy

 Accumulation buffer acts as a “floating
point” color buffer

 accumulate into accumulation buffer

 transfer results to frame buffer

Accessing Accumulation Buffer

 glAccum(op, value)

 operations

 within the accumulation buffer: GL_ADD,
GL_MULT

 from read buffer: GL_ACCUM, GL_LOAD

 transfer back to write buffer: GL_RETURN

 glAccum(GL_ACCUM, 0.5) multiplies

each value in write buffer by 0.5 and
adds to accumulation buffer

Accumulation Buffer
Applications

 Compositing

 Full Scene Antialiasing

 Depth of Field

 Filtering

 Motion Blur

Full Scene Antialiasing :
Jittering the view

 Each time we move the viewer, the
image shifts

 Different aliasing artifacts in each image

 Averaging images using accumulation
buffer averages out
these artifacts

Depth of Focus :
Keeping a Plane in Focus

 Jitter the viewer to keep one plane
unchanged

Front Plane

Back Plane

Focal Plane

eye pos1 eye pos2

Fog

 glFog{if}(property, value)

 Depth Cueing

 Specify a range for a linear fog ramp
 GL_FOG_LINEAR

 Environmental effects

 Simulate more realistic fog
 GL_FOG_EXP

 GL_FOG_EXP2

Fog Tutorial

Feedback Mode

 Transformed vertex data is returned
to the application, not rendered

 useful to determine which primitives will
make it to the screen

 Need to specify a feedback buffer
glFeedbackBuffer(size, type, buffer)

 Select feedback mode for rendering
glRenderMode(GL_FEEDBACK)

Selection Mode

 Method to determine which primitives
are inside the viewing volume

 Need to set up a buffer to have
results returned to you

glSelectBuffer(size, buffer)

 Select selection mode for rendering
glRenderMode(GL_SELECT)

Selection Mode (cont.)

 To identify a primitive, give it a name

 “names” are just integer values, not strings

 Names are stack based

 allows for hierarchies of primitives

 Selection Name Routines
glLoadName(name)

glPushName(name)

glInitNames()

Picking

 Picking is a special case of selection

 Programming steps

 restrict “drawing” to small region near

pointer

 use gluPickMatrix() on projection matrix

 enter selection mode; re-render scene

 primitives drawn near cursor cause hits

 exit selection; analyze hit records

Picking Template

glutMouseFunc(pickMe);

void pickMe(int button, int state, int x, int y)

{

 GLuint nameBuffer[256];

 GLint hits;

 GLint myViewport[4];

 if (button != GLUT_LEFT_BUTTON ||

 state != GLUT_DOWN) return;

 glGetIntegerv(GL_VIEWPORT, myViewport);

 glSelectBuffer(256, nameBuffer);

 (void) glRenderMode(GL_SELECT);

 glInitNames();

Picking Template (cont.)
 glMatrixMode(GL_PROJECTION);

 glPushMatrix();

 glLoadIdentity();

 gluPickMatrix((GLdouble) x, (GLdouble)

 (myViewport[3]-y), 5.0, 5.0, myViewport);

 /* gluPerspective or glOrtho or other projection */

 glPushName(1);

 /* draw something */

 glLoadName(2);

 /* draw something else */

 glMatrixMode(GL_PROJECTION);

 glPopMatrix();

 hits = glRenderMode(GL_RENDER);

 /* process nameBuffer */

}

Picking Ideas

 For OpenGL Picking Mechanism
 only render what is pickable (e.g., don’t

clear screen!)
 use an “invisible” filled rectangle, instead of

text
 if several primitives drawn in picking region,

hard to use z values to distinguish which
primitive is “on top”

 Alternatives to Standard Mechanism
 color or stencil tricks (for example, use

glReadPixels() to obtain pixel value from
back buffer)

Getting to the Framebuffer

Blending
Depth

Test
Dithering

Logical

Operations

Scissor

Test

Stencil

Test

Alpha

Test

F
ra

g
m

en
t

F
ra

m
eb

u
ff

er

Scissor Box

 Additional Clipping Test

 glScissor(x, y, w, h)

 any fragments outside of box are clipped

 useful for updating a small section of a
viewport

 affects glClear() operations

Alpha Test

 Reject pixels based on their alpha
value

 glAlphaFunc(func, value)

 glEnable(GL_ALPHA_TEST)

 use alpha as a mask in textures

CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Stencil Buffer

 Used to control drawing based on
values in the stencil buffer

 Fragments that fail the stencil test are
not drawn

 Example: create a mask in stencil buffer
and draw only objects not in mask area

CPU DL

Poly.
Per

Vertex

Raster Frag FB

Pixel

Texture

Controlling Stencil Buffer

 glStencilFunc(func, ref, mask)

 compare value in buffer with ref using
func

 only applied for bits in mask which are 1

 func is one of standard comparison
functions

 glStencilOp(fail, zfail, zpass)

 Allows changes in stencil buffer based on
passing or failing stencil and depth tests:
GL_KEEP, GL_INCR

Creating a Mask

 glInitDisplayMode(…|GLUT_STENCIL|…);

 glEnable(GL_STENCIL_TEST);

 glClearStencil(0x0);

 glStencilFunc(GL_ALWAYS, 0x1, 0x1);

 glStencilOp(GL_REPLACE, GL_REPLACE,

 GL_REPLACE);

 draw mask

Using Stencil Mask

 Draw objects where stencil = 1
glStencilFunc(GL_EQUAL, 0x1, 0x1)

 Draw objects where stencil != 1
glStencilFunc(GL_NOTEQUAL, 0x1, 0x1);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

Dithering

 glEnable(GL_DITHER)

 Dither colors for better looking results

 Used to simulate more available colors

Logical Operations on Pixels

 Combine pixels using bitwise logical
operations

 glLogicOp(mode)

 Common modes
 GL_XOR

 GL_AND

Advanced Imaging

 Imaging Subset
 Only available if GL_ARB_imaging defined

 Color matrix

 Convolutions

 Color tables

 Histogram

 MinMax

 Advanced Blending

