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Introduction to OpenGL 

 General OpenGL Introduction 

 An Example OpenGL Program 

 Drawing with OpenGL 

 Transformations 

 Animation and Depth Buffering 

 Lighting 

 Evaluation and NURBS 

 Texture Mapping 

 Advanced OpenGL Topics 

 Imaging modified from 
Dave Shreiner, Ed Angel, and Vicki Shreiner. 

An Interactive Introduction to OpenGL Programming. 
ACM SIGGRAPH 2001 Conference Course Notes #54. 

& ACM SIGGRAPH 2004 Conference Course Notes #29. 



Advanced OpenGL Topics 

 Display Lists and Vertex Arrays 

 Alpha Blending and Antialiasing 

 Using the Accumulation Buffer 

 Fog 

 Feedback & Selection 

 Fragment Tests and Operations 

 Using the Stencil Buffer 



Immediate Mode versus 
Display Listed Rendering 

 Immediate Mode Graphics 

 Primitives are sent to pipeline and display right 
away 

 No memory of graphical entities 

 Display Listed Graphics 

 Primitives placed in display lists 

 Display lists kept on graphics server 

 Can be redisplayed with different state 

 Can be shared among OpenGL graphics contexts 



Immediate Mode versus  
Display Lists 
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Display Lists 

 Creating a display list 
GLuint id; 

void init( void ) 

{ 

   id = glGenLists( 1 ); 

   glNewList( id, GL_COMPILE ); 

   /* other OpenGL routines */ 

   glEndList(); 

} 

 Call a created list      
void display( void ) 

{ 

   glCallList( id ); 

} 
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Display Lists 

 Not all OpenGL routines can be stored in 
display lists 

 State changes persist, 
even after a display list is finished 

 Display lists can call other display lists 

 Display lists are not editable, 
but you can fake it 

 make a list (A) which calls other lists (B, C, and D) 

 delete and replace B, C, and D, as needed 



Display Lists and Hierarchy 

 Consider model of a car 

 Create display list for chassis 

 Create display list for wheel 
glNewList( CAR, GL_COMPILE ); 

 glCallList( CHASSIS ); 

 glTranslatef( … ); 

 glCallList( WHEEL ); 

 glTranslatef( … ); 

 glCallList( WHEEL ); 

  … 

glEndList(); 



Advanced Primitives 

 Vertex Arrays 

 Bernstein Polynomial Evaluators 

 basis for GLU NURBS 

 NURBS (Non-Uniform Rational B-Splines) 

 GLU Quadric Objects 

 sphere 

 cylinder (or cone) 

 disk (circle) 



Vertex  
Arrays 

 Pass arrays of vertices, colors, etc. to 
OpenGL in a large chunk 
glVertexPointer( 3, GL_FLOAT, 0, coords ) 

glColorPointer( 4, GL_FLOAT, 0, colors ) 

glEnableClientState( GL_VERTEX_ARRAY ) 

glEnableClientState( GL_COLOR_ARRAY ) 

glDrawArrays( GL_TRIANGLE_STRIP, 0, numVerts ); 

 All active arrays are used in rendering 
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Why use 
Display Lists or Vertex Arrays? 

 May provide better performance than 
immediate mode rendering 

 Display lists can be shared between 
multiple OpenGL context 

 reduce memory usage for multi-context 
applications 

 Vertex arrays may format data for 
better memory access 



Alpha: the 4th Color 
Component 

 Measure of Opacity 

 simulate translucent objects 

 glass, water, etc. 

 composite images 

 antialiasing 

 ignored if blending is not enabled 
glEnable( GL_BLEND ) 



Blending 

 Combine pixels with what’s in already 

   in the framebuffer 

glBlendFunc( src, dst ) 
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Multi-pass Rendering 

 Blending allows results from multiple 
drawing passes to be combined 
together 

 enables more complex rendering 
algorithms 

Example of bump-mapping 

done with a multi-pass 

OpenGL algorithm 



Antialiasing 

 Removing the Jaggies 

 glEnable( mode ) 

 GL_POINT_SMOOTH 

 GL_LINE_SMOOTH 

 GL_POLYGON_SMOOTH 

 alpha value computed by computing 
sub-pixel coverage 

 available in both RGBA and colormap 
modes 



Accumulation Buffer 

 Problems of compositing into color 
buffers 

 limited color resolution 

 clamping 

 loss of accuracy 

 Accumulation buffer acts as a “floating 
point” color buffer 

 accumulate into accumulation buffer 

 transfer results to frame buffer 



Accessing Accumulation Buffer 

 glAccum( op, value ) 

 operations 

 within the accumulation buffer: GL_ADD, 
GL_MULT 

 from read buffer: GL_ACCUM, GL_LOAD 

 transfer back to write buffer: GL_RETURN 

 glAccum(GL_ACCUM, 0.5) multiplies 

each value in write buffer by 0.5 and 
adds to accumulation buffer 



Accumulation Buffer 
Applications 

 Compositing 

 Full Scene Antialiasing 

 Depth of Field 

 Filtering 

 Motion Blur 



Full Scene Antialiasing : 
Jittering the view 

 Each time we move the viewer, the 
image shifts 

 Different aliasing artifacts in each image 

 Averaging images using accumulation 
buffer averages out 
these artifacts 



Depth of Focus : 
Keeping a Plane in Focus 

 Jitter the viewer to keep one plane 
unchanged 

Front Plane 

Back Plane 

Focal Plane 

eye pos1 eye pos2 



Fog 

 glFog{if}( property, value ) 

 Depth Cueing 

 Specify a range for a linear fog ramp 
 GL_FOG_LINEAR 

 Environmental effects 

 Simulate more realistic fog 
 GL_FOG_EXP 

 GL_FOG_EXP2 



Fog Tutorial 



Feedback Mode 

 Transformed vertex data is returned 
to the application, not rendered 

 useful to determine which primitives will 
make it to the screen 

 Need to specify a feedback buffer 
glFeedbackBuffer( size, type, buffer ) 

 Select feedback mode for rendering 
glRenderMode( GL_FEEDBACK ) 



Selection Mode 

 Method to determine which primitives 
are inside the viewing volume 

 Need to set up a buffer to have 
results returned to you 

glSelectBuffer( size, buffer ) 

 Select selection mode for rendering 
glRenderMode( GL_SELECT ) 



Selection Mode (cont.) 

 To identify a primitive, give it a name 

 “names” are just integer values, not strings 

 Names are stack based 

 allows for hierarchies of primitives 

 Selection Name Routines 
glLoadName( name ) 

glPushName( name ) 

glInitNames() 



Picking 

 Picking is a special case of selection 

 Programming steps 

 restrict “drawing” to small region near 

pointer 

 use gluPickMatrix() on projection matrix 

 enter selection mode; re-render scene 

 primitives drawn near cursor cause hits 

 exit selection; analyze hit records 



Picking Template 

glutMouseFunc( pickMe ); 

 

void pickMe( int button, int state, int x, int y ) 

{ 

   GLuint nameBuffer[256]; 

   GLint hits; 

   GLint myViewport[4]; 

   if (button != GLUT_LEFT_BUTTON ||  

       state != GLUT_DOWN) return; 

   glGetIntegerv( GL_VIEWPORT, myViewport ); 

   glSelectBuffer( 256, nameBuffer ); 

   (void) glRenderMode( GL_SELECT ); 

   glInitNames(); 



Picking Template (cont.) 
   glMatrixMode( GL_PROJECTION ); 

   glPushMatrix(); 

   glLoadIdentity(); 

   gluPickMatrix( (GLdouble) x, (GLdouble)  

               (myViewport[3]-y), 5.0, 5.0, myViewport ); 

   /*   gluPerspective or glOrtho or other projection  */ 

   glPushName( 1 ); 

   /*   draw something  */ 

   glLoadName( 2 ); 

   /*   draw something else  */ 

   glMatrixMode( GL_PROJECTION ); 

   glPopMatrix(); 

   hits = glRenderMode( GL_RENDER ); 

   /*   process nameBuffer  */ 

} 

 



Picking Ideas 

 For OpenGL Picking Mechanism 
 only render what is pickable (e.g., don’t 

clear screen!) 
 use an “invisible” filled rectangle, instead of 

text 
 if several primitives drawn in picking region, 

hard to use z values to distinguish which 
primitive is “on top” 

 Alternatives to Standard Mechanism 
 color or stencil tricks (for example, use 

glReadPixels() to obtain pixel value from 
back buffer) 



Getting to the Framebuffer 
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Scissor Box 

 Additional Clipping Test 

 glScissor( x, y, w, h ) 

 any fragments outside of box are clipped 

 useful for updating a small section of a 
viewport 

 affects glClear() operations 



Alpha Test 

 Reject pixels based on their alpha 
value 

 glAlphaFunc( func, value ) 

 glEnable( GL_ALPHA_TEST ) 

 use alpha as a mask in textures 
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Stencil Buffer 

 Used to control drawing based on 
values in the stencil buffer 

 Fragments that fail the stencil test are 
not drawn 

 Example: create a mask in stencil buffer 
and draw only objects not in mask area 
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Controlling Stencil Buffer 

 glStencilFunc( func, ref, mask ) 

 compare value in buffer with ref using 
func 

 only applied for bits in mask which are 1 

 func is one of standard comparison 
functions 

 glStencilOp( fail, zfail, zpass ) 

 Allows changes in stencil buffer based on 
passing or failing stencil and depth tests: 
GL_KEEP, GL_INCR 



Creating a Mask 

 glInitDisplayMode( …|GLUT_STENCIL|… ); 

 glEnable( GL_STENCIL_TEST ); 

 glClearStencil( 0x0 ); 

 

 glStencilFunc( GL_ALWAYS, 0x1, 0x1 ); 

 glStencilOp( GL_REPLACE, GL_REPLACE,  

             GL_REPLACE ); 

    draw mask 



Using Stencil Mask 

 Draw objects where stencil = 1 
glStencilFunc( GL_EQUAL, 0x1, 0x1 ) 

 

 Draw objects where stencil != 1 
glStencilFunc( GL_NOTEQUAL, 0x1, 0x1 ); 

glStencilOp( GL_KEEP, GL_KEEP, GL_KEEP );    



Dithering 

 glEnable( GL_DITHER ) 

 Dither colors for better looking results 

 Used to simulate more available colors 



Logical Operations on Pixels 

 Combine pixels using bitwise logical 
operations 

 glLogicOp( mode ) 

 Common modes 
 GL_XOR 

 GL_AND 



Advanced Imaging 

 Imaging Subset 
 Only available if GL_ARB_imaging defined 

 Color matrix 

 Convolutions 

 Color tables 

 Histogram 

 MinMax 

 Advanced Blending 


