
Noname manuscript No.
(will be inserted by the editor)

Curling and Clumping Fur Represented by Texture Layers

Paulo Silva · Yosuke Bando · Bing-Yu Chen · Tomoyuki Nishita

Received: date / Accepted: date

Abstract Fur is present in most mammals which are
common characters in both movies and video-games,

and it is important to model and render fur both re-

alistically and quickly. When the objective is real-time

performance, fur is usually represented by texture lay-
ers (or 3D textures), which limits the dynamic charac-

teristics of fur when compared with methods that use

an explicit representation for each fur strand.

This paper proposes a method for animating and

shaping fur in real-time, adding curling and clumping
effects to the existing real-time fur rendering methods

on the GPU. Besides fur bending using a mass-spring

strand model embedded in the fur texture, we add small

scale displacements to layers to represent curls which
are suitable for vertex shader implementation, and we

also use a fragment shader to compute intra-layer off-

sets to create fur clumps. With our method, it be-

comes easy to dynamically add and remove fur curls

and clumps, as can be seen in real fur as a result of fur
getting wet and drying up.

Keywords Fur Textures · Fur Curling · Fur Clump-

ing · Real-Time Rendering

CR Subject Classification Computer Graphics:

I.3.7 - Three-Dimensional Graphics and Realism -

Animation

Paulo Silva · Tomoyuki Nishita
The University of Tokyo
E-mail: {paulo,nis}@nis-lab.is.s.u-tokyo.ac.jp

Yosuke Bando
Toshiba Corporation and The University of Tokyo

E-mail: yosuke1.bando@toshiba.co.jp

Bing-Yu Chen
National Taiwan University E-mail: robin@ntu.edu.tw

(a)

(c)

(b)

(d)

Fig. 1 Examples of real-time dynamic fur manipulations possi-
ble with our method: (a) normal straight, (b) curly (c) dry, and
(d) clumped wet furs.

1 Introduction

In real life, furry surfaces tend to be fluffy and soft,

and fur often curls and forms clumps (i.e., fur strands
gather into a cluster) when wet. In computer graphics,

existing fur related researches concentrate either on re-

alism or real-time rendering. In the latter, fur is usu-

ally represented by static 3D textures or texture layers,
which limits the dynamic characteristics of fur when

compared with methods that use an explicit represen-

tation for each fur strand.



2

In this paper we propose a method for manipulating

the fur shape while maintaining real-time performance.

We focus on (un)curling and (un)clumping effects vis-

ible when fur becomes wet or dries up, and add these

effects to the existing real-time fur rendering methods
on GPU [Lengyel et al., 2001]. We generate a 2D tex-

ture mask representing wet fur clumping areas, so that

portions of the object surface can be selectively subject

to wetness. We position a mass-spring fur strand model
over the object surface, and use it to displace the fur

texture layers to represent large scale deformation of

the fur. This algorithm is aimed to be implemented in

the GPU vertex shader.

We also use the same wetness mask to know if a

strand is in a clump region, and if so we compute the
displacement that the strand should suffer due to the

clumping effect. This algorithm is suitable to be imple-

mented in the GPU fragment shader, because different

displacements need to be applied to each point within

a layer, and we realize this using texture coordinate
manipulation.

As a result, our method can dynamically add and

remove fur curls and clumps, as can be seen in real fur

when getting wet and drying up. Examples illustrating

the proposed method are shown in Fig. 1. To the best

of our knowledge, the effects possible with our method
were not seen performed in real-time in the previous

research.

2 Related Work

In literatures, there can be found several kinds of ap-

proaches to render fur or fur-like geometric detail (e.g.
grass). The main differences between these methods are

the way the fur data is stored and the way the render-

ing algorithm produces the final image. There are three

main approaches: methods that store the fur data using
textures, methods that use lines or curves to represent

each fur strand individually, and methods that gener-

ate fur procedurally using a mathematical model for

its structure. Researches representative of each of these

methods are summarized as follows.

2.1 Fur Represented by Textures

Fur rendering using textures for its representation was

first presented by [Kajiya and Kay, 1989]. The authors

store fur illumination parameters in the texture and

ray-trace it to render the final image. Later [Neyret,
1998, Meyer and Neyret, 1998] proposed a method to

represent a volume by using several semi-transparent

slices in planes parallel to the xy, yz and zx planes.

These slices are stored into three separate 3D textures.

This method became popular for real-time fur rendering

through the work of [Lengyel et al., 2001], in which the

authors used one 3D texture and a single extra layer to

represent fur. This method served as a basis to several
similar techniques [Isidoro and Mitchell, 2002, Bakay

et al., 2002, Papaioannou, 2002, McGuire and Hughes,

2004, Habel et al., 2007, Tariq and Bavoil, 2008] most

using the power of the ongoing GPU development to
improve a single part of the rendering process.

A method for rendering fur using precomputed radi-

ance transfer was presented by [Kloetzli, 2006]. [Banisch

and Wüthrich, 2006] presents a throughout discussion

on mass-spring simulation for the animation of fur and
grass represented by texture layers. More recently, re-

search targeting the view dependency of the number

of layers on the perception of the fur detail, and fur

shadowing were presented by [Yang et al., 2006, 2008,

Sheng et al., 2009]. A method for mapping fur geometry
directly onto the mesh was presented by [Elber, 2005,

Jeschke et al., 2007]. A method for painting fur geom-

etry directly on the model was proposed by [Owada

et al., 2008]. Finally, [Jiao and Wu, 2009] presented
a method for simulating weathered fur. However, dy-

namic curling and clumping effects cannot be found in

none of the above literature.

2.2 Fur Represented by Geometric Primitives

Classic examples of this approach were presented by

[Csuri et al., 1979, Miller, 1988, Gelder and Wilhelms,

1997]. A method for rendering wet fur clumping was in-

troduced by [Bruderlin, 2000, 2003]. This method con-
centrates primarily on representing the shape the fur

takes when wet, but is not real-time oriented. We take

a similar approach, but we target real-time rendering.

Some optimizations to [Bruderlin, 2000, 2003] were pro-
posed by [Takeuchi et al., 2009], but real-time perfor-

mance was not achieved.

2.3 Procedural Fur

A classic approach in this area is to use a probabilis-

tic model as in the work by [Perlin and Hoffert, 1989,

Goldman, 1997]. A particle based cell generator was

presented by [Fleischer et al., 1995]. Finally, [Kowalski
et al., 1999] proposed a method which generates proce-

dural fur-like boundaries, targeting non-photorealistic

applications.



3

(a) (b) (c) (d) (e)

Fig. 2 (a) An example of previous methods [Lengyel et al., 2001, Tariq and Bavoil, 2008] for repenting straight fur. (b) The fur with
a tangent space displacement (red arrow) applied to the vertex normal. (c) Our method uses a virtual strand based on a mass-spring
system, which is used to control the fur texture deformation and (d) with external forces applied. (e) Fur curling due to factor φ(h)
represented schematically.

(a)

(b) (c)

Fig. 3 (a) Input color texture pattern. (b) Fur geometry texture
layers. (c) The result of applying (a) to (b).

(a)
(b)

Fig. 4 (a) Fur under the influence of a global force. The white
line in the middle of the furry triangle represents the mass-
spring strand model presented in Sec. 3.2. The underlying fur
texture layers perpendicular to the surface triangle are reposi-
tioned during rendering as a result of mass-spring strand model
shape changes. (b) A square covered with fur under the influence
of wind (red arrow).

3 Curling and Clumping Fur

Our algorithm is oriented towards a GPU implemen-

tation and is composed of two phases. The first phase

occurs in the vertex shader where we implement a curl-

ing or uncurling fur effect. The second phase occurs in

the fragment shader where we implement the clumping

and rendering.

In our method, the fur representation is based on

Lengyel et al.’s [Lengyel et al., 2001] work, extended to
support dynamic curling. This rendering algorithm pro-

duces the results shown in Fig. 3 (c). Our fur clumping

method conceptually resembles Bruderlin’s [Bruderlin,

2000] work, but is oriented towards a GPU implemen-
tation for real-time rendering.

Our method uses as input a mesh and a texture
representing the fur color. We create a wetness mask

texture (Fig. 5), which contains the clump regions in-

formation. Here we assume a parameterization from the

model to the texture is available. In the wetness mask
we store the center of the clump, its radius, and its

wetness or clump-percent (see Sec. 3.1).

During rendering, in the vertex shader we displace

the base surface as explained in Sec. 3.2.2, then in the

fragment shader we apply a fur clumping process as

described in Sec. 3.3.

3.1 Wetness Mask Generation

In our method each drop of water (or droplet) creates

a fur clump and removes curliness of the fur. When

droplets overlap, the overlapping areas create a new
clump. To store this information we create an additional

texture which we call wetness mask (Fig. 5). Here we

assume a parametrization from the model to the tex-

ture is available. The clumps are added by blending

droplets into the wetness mask texture. Consider that
a droplet hit the input mesh at position cmesh. Let the

droplet position cdrop = (u, v) be a texture coordinate

in the wetness mask corresponding to cmesh on the ob-

ject surface. Let rdrop be the radius, and ρdrop ∈ [0, 1]
be the wetness of that droplet, respectively. The droplet

position cdrop is written to texture channels (R, G) and

(rdrop, ρdrop) are written to texture channels (B, A). Let



4

Fig. 5 Using the mesh parametrization and the wetness mask,
we compute the texture coordinate displacement d. The black
area in the wetness mask represents dry fur. The colored area
represents the wet areas (see Sec. 3.3). In the clump section we
can see: d is the fur displacement vector, p is the current pixel
texture coordinates in the wetness mask space, c is the center
of the clump, h is the normalized fur length, r is the radius of

the clump, and ρ is the wetness or clumping percentage. The
clump section illustrates schematically a clump section of the
fur in Fig. 9 (a), where in orange we have the strands already
displaced and in black (over point c) we have the clump center
or master-strand as in [Bruderlin, 2000].

cmask, rmask and ρmask be the values previously written

to the wetness texture. A droplet is blended into the
wetness mask texture using Alg. 1.

3.2 Dynamics and Curliness Control

In this section we define our mass-spring model and

explain how it is used to control the fur texture lay-

ers. Previous methods [Lengyel et al., 2001, Isidoro and

Mitchell, 2002, Tariq and Bavoil, 2008, Yang et al.,

2006, 2008, Sheng et al., 2009] extrude the surface in
the vertex normal direction, while blending successive

texture layers on top of each other (see Fig. 2 (a) and

(b)). Our method uses an arbitrary displacement func-

tion composed by two factors as:

voffset(h) = β(h) + φ(h). (1)

The parameter h ∈ [0, 1] is the normalized fur length.

The factor β(h) is responsible for the fur bending due to

Algorithm 1 Blend Droplet Into Wetness Mask
if ‖cmask − cdrop‖ ≤ rdrop then

if ρmask 6= 0 then

ρtotal = clamp(ρmask + ρdrop, 0, 1)
if ρtotal 6= 0 then

α = ρdrop/ρtotal

cmask = (1 − α)cmask + αcdrop

rmask = (1− α)rmask + αrdrop

end if

ρmask = ρtotal

end if

else

cmask = cdrop

ρmask = ρdrop

rmask = rdrop

end if

(a) (b)

Fig. 6 Difference in fur shape and highlights when (a) rendered
with factor β(h) 6= 0, and (b) using only a linear tangent space
displacement (as in e.g. [Lengyel et al., 2001]). The red arrows
in the figures represent the direction in which the layers are dis-
placed.

external forces applied to a mass-spring simulation (see

Sec. 3.2.1). The factor φ(h) controls the fur shape at a

finer scale (see Sec. 3.2.2), which we use to control the

fur curliness. The factor voffset(h) is used in the vertex
shader to displace the incoming vertices from the input

triangular mesh. These factors are explained in more

detail in the next subsections.

3.2.1 Fur Strand Model

In our method we embed a mass-spring strand model

per mesh triangle (see Fig. 2 (d)). There are examples of

mass-spring systems used for texture space deformation

as in [Neyret, 1998], but our model aims at simplicity
of implementation and performance. We use only one

mass and spring per simulated strand. The particle has

initial position p0, instant position p and position on

the surface proot. Each fur strand is composed by an
initial length L0 = ‖p0 − proot‖, a growth direction

normal to the surface, and a single particle with mass

m, positioned at the tip of the strand. The behavior is



5

(a) Kα = 0, ω = 0

(c) Kα = 0.039, ω = 2.3

(b) Kα = 0.05, ω = 1.0

(d) Kα = 0.009, ω = 7.2

Fig. 7 Fur rendering: (a) straight fur, (b) wavy, (c) with few
large curls, and (d) with many small curls.

defined simply by

∑

i

f i = mp̈, (2)

where
∑

i f i is the sum of all the forces on the par-
ticle like wind, gravity, etc. The particle position p is

connected to its initial position p0 by a spring of con-

stant k (see Fig. 2 (d)). The length of the fur strand is

loosely constrained by limiting its area of movement to
the hemisphere above the surface, represented by the

following conditions:

{

‖p− proot‖ ≤ L0,
(p− proot) · n ≥ 0.

(3)

The strand shape is approximated by a quadratic Bezier
curve defined by proot, p0, and p. For N layers, we

sample the curve at N points, and these positions are

used to displace each layer, as illustrated by the red

points in Fig. 2 (c), (d) and (e). In Fig. 4 we can see a

rendering illustrating the mass-spring strand (in white)
controlling the shape of the surrounding fur, which is

represented by texture layers. The rendering compari-

son using simple tangent displacement and our factor

β(h) is shown in Fig. 6. This virtual strand allows the
fur texture to bend more freely. Note that although fur

layers can take an arbitrary position, they are always

parallel to the base surface.

(a)

(b) (c)

Fig. 8 (a) Input fur texture. (b) Wetness mask with wet areas
displayed in blue. (c) The result of applying to input fur texture
(a) the method presented in Sec. 3.3, using the wetness texture
(b).

3.2.2 Curliness Control

We define a function φ(h) (Fig. 2 (e)) that controls the

fur curling. This function computes a displacement in
the tangent space of the input mesh as:

φ(h) = α(h) cos (ωh)u + α(h) sin (ωh)v, (4)

where ω is a curl frequency, α(h) is a curl radius fac-

tor, h is the normalized fur length, and u and v span

the surface tangent space. Here we used the expression

α(h) = (1 − ρmask)Kαh, where ρmask ∈ [0, 1] is the
wetness at the strand location, and Kα is a constant

representing the radius of the curl. Note that fur loses

curliness as the wetness ρmask increases. Although other

expressions can also be used in place of the proposed
φ(h), we found it to produce interesting results. Fig. 7

shows some examples of how this factor contributes to

the fur shape.

3.3 Fur Clumping

The algorithm presented in this section aims at con-
trolling the texture layers content directly by texture

coordinates manipulation. Our target is to obtain an

effect similar to wet fur clumping proposed by [Bruder-

lin, 2000, 2003] within the GPU fragment shader frame-

work. To deform the fur in order to create clumps, we
compute a displacement d in the fragment shader for

each visible position on the input mesh. Then we dis-

place the texture coordinates of that position if the

region is wet. To check whether the region is wet or
not, we inspect the wetness mask (Fig. 5) using the

model parametrization. The displacement d is illus-

trated schematically in the cross-sectional view (clump



6

(a)

(c)

(b)

(d)

Fig. 9 Fur with w = 0 (a,b) and w = 1 (c,d).

section) in Fig. 5. We compute the displacement d as:

d = ((1 − w)h + whw)ρmaskrmask(cpixel − cmask), (5)

where h ∈ [0, 1] is the normalized fur length, ρmask is the

wetness, rmask is the clump radius, cpixel is the current

pixel position on the wetness mask, and cmask is the

center of the clump.

The factor w is a constant that controls the blend-
ing between the functions in Eq. 5. Simply put, the

factor w controls how the fur shape bends towards the

clump center. Fig. 9 (a) and (b) show the illustration

where the fur maintains a straight shape while leaning
towards the clump center. In Fig. 9 (c) and (d), the fur

shape bends in towards the center of the clump along

its length. This factor is somewhat similar to [Brud-

erlin, 2000, 2003]’s clump-rate factor. Then, we add d

to the texture coordinates of the wetness texture. If the
ρmask read from the wetness texture (Fig. 5) at this new

position is not 0 (which means the location is wet), we

draw the fur using the color and fur texture coordinates

displaced by d. Otherwise we discard the fragment be-
cause it no longer comes from a clump region. If an area

is not in a clump region, we do not displace any tex-

ture coordinates, and directly render the fur using the

original texture coordinates.

This idea is stated in Alg. 2, where uvcolor and uvgeo

are the corresponding color and fur texture coordinates.

Note that although the fur texture has three coordi-

nates, only two are displaced.

Algorithm 2 Fur Clumping
if ρmask 6= 0 then

compute d

if ‖cpixel − cmask‖ > rmask then

ignore pixel from a different clump
end if

if ρmask = 0 at cpixel + d then

ignore pixel from a dry area
end if

uvcolor ← uvcolor + d

uvgeo ← uvgeo + d

if no geometry at uvgeo then

ignore transparent pixel
end if

compute color using uvcolor

end if

4 Rendering

For rendering, the input surface parameterization is cal-

culated using the methods from [Saboret et al., 2009].

For the fur texture creation, the methods proposed by

either [Lengyel, 2000] or [Papaioannou, 2002] can be
used, for which we chose the latter. The rendering pro-

cess resembles previous methods like [Lengyel et al.,

2001, Tariq and Bavoil, 2008]. For completeness, we do

a brief description here. First, we draw the input mesh
once with z-buffer writing enabled. Next, z-buffer writ-

ing is disabled, blending is enabled, and the fur texture

is selected. Then we render the base surface N times,

once per layer (where N is the number of layers). For

each of these passes, the displacement voffset is applied
to each layer individually. This factor displaces the base

surface to its final position.

In the vertex shader, we apply Eq. 1 to each vertex

normal. In the fragment shader, we select the corre-

sponding texture fragment from the fur texture layers

(3D texture) using the interpolated surface texture co-
ordinates (u, v) plus third texture coordinate h, which is

the current normalized fur length h = (1+n)/N , where

n ∈ [0, N − 1] is the current layer. For non-transparent

fragments, we use [Kajiya and Kay, 1989] illumination

model with a given specular color Ks and with the color
Kcolor extracted from the input color texture, and com-

pute the final fragment color Cfrag as:

Cd = Kcolor(T × L),

Cs = Ks[(T · L)(T ·E) + (T × L)(T × E)]pphong ,

Cfrag = γ(Cd + Cs),

(6)

where T is the tangent to the embedded virtual strand
at fur length h, L is the light direction, E is the cam-

era direction, and pphong is the Phong exponent. In our

current implementation, the tangent T is computed N



7

Table 1 Performance evaluation. In a large part of the examples
we obtained real-time performance.

Model #Triangles 16 Layers
800× 600 1680× 1050

Torus 9.360 267 117
Pear 20.845 256 117

Hippo 44.452 154 80
Cow 92.689 78 63
Horse 95.533 66 52
Bunny 142.307 24 22

Elephant 154.789 25 21
Lion 365.118 3 3

Model #Triangles 64 Layers
800× 600 1680× 1050

Torus 9.360 90 35
Pear 20.845 84 34

Hippo 44.452 51 24
Cow 92.689 28 21
Horse 95.533 23 17
Bunny 142.307 8 8

Elephant 154.789 7 7
Lion 365.118 < 1 < 1

times per triangle, once for each layer. Highlights due

to the fur curving are visible for example in Fig. 6 (a).
Another possible choice for the color computation is

using [Gupta and Magnenat-Thalmann, 2007], since it

accounts for the water contained in the fur. We add

a simple shadow effect by introducing a factor γ =
(Kshadow − 1 + h)/Kshadow, for Kshadow ≥ 1 chosen

by the user, which multiplied by the fur color dark-

ens the lower part of the fur. Although methods such

as [Lokovic and Veach, 2000, Yang et al., 2008] can

possibly provide better results, for short fur this simple
method is effective and inexpensive. Fig. 8 (a) shows

a rendering of normal (or dry) fur, which is similar to

previous methods. Applying the wetness mask in Fig. 8

(b) to Fig. 8 (a), the desired clumping effect is achieved
as shown in Fig. 8 (c).

5 Results

Fig. 10, Fig. 11, Fig. 13 and Fig. 12 show some more
examples, which were rendered using 16 layers. Our per-

formance evaluations were conducted on a desktop PC

with an Intel Quad CoreTM 3GHz CPU, 2GB main

memory, and a NVIDIA GeForce 8800 GTS GPU with

320MB dedicated video memory. The resolution of the
wetness mask and fur texture layers is 256 × 256. The

performance of our method decreases about linearly

with the number of layers and sub-linearly with the

screen resolution.

The frame-rates obtained are summarized in Tbl. 1.

Our results indicate that as the model size (number

of triangles) increases, the resolution of the screen in-

(a)
(b)

Fig. 10 (a) Stanford Bunny and (b) Teddy bear (b) covered
with curly fur.

(a)
(b)

Fig. 11 Stanford Bunny with (a) dry fur and (b) wet clumped
fur. The wetness mask and the parameterization used can be seen
on the top-left part of the figures. The black regions represent dry
areas, while the blue regions represent wet areas.

fluences less the frame-rate. On the other hand, the

number of layers always affects the frame-rate. In our

results, rendering at 64 layers performs at about 1/3 of

the frame-rate as when rendered with 16 layers. How-

ever we still obtain real-time performance for the rel-
evant models. When compared with previous methods

(e.g. [Lengyel et al., 2001, Tariq and Bavoil, 2008]), our

method adds a fur clumping effect at the expense of

some additional computation.

6 Conclusion and Future Work

We have presented a method to add dynamic behav-
ior to fur represented by texture layers. One part which

controls the fur curliness and another part that controls

the fur clumping. Our method is aimed for a GPU im-

plementation, and is suitable for real-time applications.
Our results show that our method can produce the de-

sired clumping and curling effects for a small overhead

in the rendering. We think this is a small price to pay

for the extra dynamic characteristics that our method

adds, which were not present in previous real-time ren-
dering methods.

We think our method can be expanded by adding

support to other styles of fur, apart from the curly or

wavy kinds. Perhaps even more interesting would be



8

(a) (b) (c)

Fig. 12 (a) A cat head covered with dry fur, and (b) after adding random droplets over the surface. The word “CGI10” written on
a furry square, and the corresponding wetness mask at the upper left corner of (c).

Fig. 13 Detailed view of the fur clumps.

to encode the fur shape in a color texture to facilitate

the integration with the whole coloring and shape con-

trol framework. Additionally, we think that an inter-

esting extension would be to add support to contact
interactions. For example, within a physics framework,

a soft-body tends to deform when collides. We think

our method can be extended to deform the fur in these

situations.

References

B. Bakay, P. Lalonde, and W. Heidrich. Real time an-

imated grass. In Eurographics 2002 Short Papers,

pages 32–41, 2002.

S. Banisch and C. Wüthrich. Making grass and fur
move. Journal of WSCG, 14(1-3):25–32, 2006.

A. Bruderlin. A method to generate wet and broken-up

animal fur. The Journal of Visualization and Com-

puter Animation, 11(5):249–259, 2000.
A. Bruderlin. A basic hair/fur pipeline. In ACM

SIGGRAPH 2003 Course Notes - Photorealistic Hair

Modeling, Animation, and Rendering. 2003.

C. Csuri, R. Hackathorn, R. Parent, W. Carlson, and

M. Howard. Towards an interactive high visual com-

plexity animation system. In ACM SIGGRAPH 1979

Conference Proceedings, pages 289–299, 1979.

G. Elber. Geometric texture modeling. IEEE Computer

Graphics and Applications, 25(4):66–76, 2005.

K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H.

Barr. Cellular texture generation. In ACM SIG-

GRAPH 1995 Conference Proceedings, pages 239–

248, 1995.

A. V. Gelder and J. Wilhelms. An interactive fur model-

ing technique. In Graphics Interface 1997 Conference

Proceedings, pages 181–188, 1997.

D. B. Goldman. Fake fur rendering. In ACM SIG-

GRAPH 1997 Conference Proceedings, pages 127–

134, 1997.

R. Gupta and N. Magnenat-Thalmann. Interactive ren-
dering of optical effects in wet hair. In Proceedings of

the 2007 ACM Symposium on Virtual Reality Soft-

ware and Technology, pages 133–140, 2007.

R. Habel, M. Wimmer, and S. Jeschke. Instant an-
imated grass. Journal of WSCG, 15(1-3):123–128,

2007.

J. Isidoro and J. L. Mitchell. User customizable real-

time fur. In ACM SIGGRAPH Conference Abstracts

and Applications, page 273, 2002.

S. Jeschke, S. Mantler, and M. Wimmer. Interactive

smooth and curved shell mapping. In Proceedings

of the 2007 Eurographics Symposium on Rendering,

pages 351–360, 2007.
S. Jiao and E. Wu. Simulation of weathering fur. In

Proceedings of the 2009 International Conference on

Virtual Reality Continuum and its Applications in

Industry, pages 35–40, 2009.
J. T. Kajiya and T. L. Kay. Rendering fur with three di-

mensional textures. In ACM SIGGRAPH 1989 Con-



9

ference Proceedings, pages 271–280, 1989.

J. Kloetzli. A Volumetric Approach to Rendering Mi-

crogeometry Using Precomputed Radiance Transfer.

Undergradute thesis. University of Maryland, 2006.

M. A. Kowalski, L. Markosian, J. D. Northrup, L. Bour-
dev, R. Barzel, L. S. Holden, and J. F. Hughes. Art-

based rendering of fur, grass, and trees. In ACM SIG-

GRAPH 1999 Conference Proceedings, pages 433–

438, 1999.
J. Lengyel, E. Praun, A. Finkelstein, and H. Hoppe.

Real-time fur over arbitrary surfaces. In Proceedings

of the 2001 Simposium of Interactive 3D Graphics,

pages 227–232, 2001.

J. E. Lengyel. Real-time hair. In Proceedings of the

2000 Eurographics Workshop on Rendering Tech-

niques, pages 243–256, 2000.

T. Lokovic and E. Veach. Deep shadow maps.

In ACM SIGGRAPH 2000 Conference Proceedings,
pages 385–392, 2000.

M. McGuire and J. F. Hughes. Hardware-determined

feature edges. In Proceedings of the 2004 Interna-

tional Symposium on Non-Photorealistic Animation

and Rendering, pages 35–47, 2004.
A. Meyer and F. Neyret. Interactive volume textures.

In Proceedings of the 1998 Eurographics Symposium

on Rendering, pages 157–168, 1998.

G. S. P. Miller. From wire-frames to furry animals.
In Graphics Interface 1988 Conference Proceedings,

pages 138–145, 1988.

F. Neyret. Modeling and animating, and rendering

complex scenes using volumetric textures. IEEE

Transactions on Visualization and Computer Graph-

ics, 4(1):55–70, 1998.

S. Owada, T. Harada, P. Holzer, and T. Igarashi. Vol-

ume painter: Geometry-guided volume modeling by

sketching on the cross-section. In Proceedings of the

2008 Eurographics Workshop on Sketch-Based Inter-

faces and Modeling, pages 1–8, 2008.

G. Papaioannou. A simple and fast technique for fur

rendering. Technical report, University of Athens,

2002.
K. Perlin and E. M. Hoffert. Hypertexture. In ACM

SIGGRAPH 1989 Conference Proceedings, pages

253–262, 1989.

L. Saboret, P. Alliez, and B. Lévy. Planar parameteri-
zation of triangulated surface meshes. In CGAL User

and Reference Manual. CGAL Editorial Board, 3.5

edition, 2009. URL http://www.cgal.org/Manual/

3.5/doc_html/cgal_manual/packages.html#Pkg:

SurfaceParameterization.
B. Sheng, H. Sun, G. Yang, and E. Wu. Furstyling on

angle-split shell textures. Computer Animation and

Virtual Worlds, 20(2-3):205–213, 2009.

K. Takeuchi, N. Petit, G. Guidet, and M. M. Maes.

Production tools for furry characters. In ACM SIG-

GRAPH Asia 2009 Posters, page Article No. 13,

2009.

S. Tariq and L. Bavoil. Real time hair simulation and
rendering on the gpu. In ACM SIGGRAPH 2008

Talks, page Article No. 37, 2008.

G. Yang, H. Sun, W. Wang, and E. Wu. Interactive fur

modeling based on hierarchical texture layers. In Pro-

ceedings of the 2006 ACM International Conference

on Virtual Reality Continuum and its Applications,

pages 343–346, 2006.

G. Yang, H. Sun, E. Wu, and L. Wang. Interactive fur

shaping and rendering using nonuniform-layered tex-
tures. IEEE Computer Graphics and Applications,

28(4):85–93, 2008.



10

Paulo Silva received his B.E. in Electrical Engineer-

ing from the I.S.C.T.E., Portugal, in 2005, and his M.S.

degree in Computer Science from the University of Tokyo,

Japan, in 2010. His research interests center on com-
puter graphics particularly on real-time rendering.

Yosuke Bando received B.S., M.S., and Ph.D. de-
grees in Computer Science from the University of Tokyo

in 2001, 2003, and 2010, respectively. After joining the

TOSHIBA Corporation in 2003, he has been engaged

in the development of advanced semiconductor chips for
computer graphics, vision, and image processing.

Bing-Yu Chen received the B.S. and M.S. degrees in

Computer Science and Information Engineering from

the National Taiwan University, Taipei, in 1995 and

1997, respectively, and received the Ph.D. degree in In-

formation Science from The University of Tokyo, Japan,
in 2003. He is currently an associate professor jointly

affiliated with the Department of Information Manage-

ment, Department of Computer Science and Informa-

tion Engineering, and Graduate Institute of Network-
ing and Multimedia, of the National Taiwan Univer-

sity, and is a visiting researcher in the Department

of Computer Science of The University of Tokyo. His

research interests are mainly for computer graphics,

geometric modeling, image and video processing, and
human-computer interaction. He is a member of ACM,

ACM SIGGRAPH, Eurographics, IEEE, IEICE, and

IICM.

Tomoyuki Nishita received the B.E., M.E., and Ph.D.

degrees in Electrical Engineering from Hiroshima Uni-

versity, Japan, in 1971, 1973, and 1985, respectively. He
worked for Mazda Motor Corp. from 1973 to 1979. He

has been a lecturer at the Fukuyama University since

1979, then became an associate professor in 1984, and

later became a professor in 1990. He moved to the De-
partment of Information Science of the University of

Tokyo as a professor in 1998 and now is a professor at

the Department of Complexity Science and Engineer-

ing of the University of Tokyo (since 1999). He received

a Research Award on Computer Graphics from IPSJ in

1987, Steven A. Coons Awards from ACM SIGGRAPH

in 2005, and a CG Japan Award in 2006. His research
interest is mainly in computer graphics. He is a member

of IEICE, IPSJ, ACM, and IEEE.


