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Figure 1: Given a pre-trained NeRF model, the user can (a) choose a view and (b) draw a mask to specify the unwanted object in
the 3D scene. Our framework optimizes the NeRF model based on a user-provided mask and removes the unwanted object
in the mask region. The optimized NeRF synthesizes inpainted results that match ground truth results from different views.
(Noted that the user-chosen view is different from view A and view B.)

ABSTRACT
近年來，神經輻射場(NeRF)在電腦視覺和電腦圖學上展現了
強大的能力，其利用神經網路的學習能夠生成對應場景的各
視角的3D影象。而後續的相關研究也展現了神經輻射場能夠
處理許多不同的任務，包括位置預測、動態場景生成、光線
處理等。然而如何將2D的資訊傳播在神經輻射場這樣的3D表
示法中依舊是個問題。由於我們無法得知哪幾個權重會對神
經輻射場的顏色和幾何形狀產生改變，這無疑是個艱難的挑
戰。 在這篇論文中，我們將會介紹第一個能夠讓使用者隨
意去除場景物體並基於神經輻射場的架構。在一開始的情境
中，使用者可以針對一個角度下的照片去進行編輯，移除其
中不想要的物體或區塊。隨後架構會將這個使用者提供的資
訊(遮罩)轉移到其他角度渲染的照片並產生初步的顏色/深度
參考圖。緊接著我們會根據著參考圖去優化原本的神經輻射
場，修改內部有關聯的權重並達到移除物體的效果。我們將
我們的架構實驗在不同的場景中並發現其能夠展現視覺完整
且各角度一致的渲染效果，同時也不需要人力的介入或者重
新訓練整個神經輻射場。
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1 INTRODUCTION
Recent advancements in neural rendering, such as Neural Radiance
Fields (NeRF) [Mildenhall et al. 2020] has emerged as a powerful
representation for the task of novel view synthesis, where the goal
is to render unseen viewpoints of a scene from a given set of input
images. NeRF encodes the volumetric density and color of a scene
within the weights of a coordinate-based multi-layer perceptron.
Several follow-up works extend original NeRF to handle different
tasks, such as pose estimation [Lin et al. 2021; Wang et al. 2021b],
3D-aware image synthesis [Chan et al. 2021; Niemeyer and Geiger
2021; Schwarz et al. 2020], deformable 3D reconstruction [Liu et al.
2021a; Park et al. 2021; Pumarola et al. 2020], and modeling dynamic
scenes [Gao et al. 2021; Guo et al. 2021; Xian et al. 2021].

Though NeRF achieves great performance on photo-realistic
scene reconstruction and novel view synthesis, there remain enor-
mous challenges in editing the geometries and appearances of a
scene represented by a pre-trained NeRF model. Unlike traditional
image editing, a user needs to transfer his/her edits on a rendered
view to the NeRF model to edit the whole scene, thus introducing
multiple challenges. First, it is unclear where the edited regions
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appear on other rendered views. Second, because millions of pa-
rameters are used in a pre-trained NeRF model, it is unclear which
parameters control the different aspects of the rendered shape and
how to change the parameters according to the sparse local user
input. Previous works [Liu et al. 2021b] enable users to perform
color and shape editing on a category-level NeRF. However, these
methods require additional category-specific training and data to
support the desired editings.

In this paper, we focus on the NeRF inpainting problem, i.e., re-
moving unwanted objects in a 3D scene represented by a pre-trained
NeRF. Although we can ask a user to provide a mask and the in-
painted image for each rendered view and use these images to
train a new NeRF, there are several disadvantages. First, it is labor-
intensive to provide masks for many rendered views. Second, there
will be visual inconsistency across different inpainted views intro-
duced by separate inpainting.

To address these issues, we propose a framework to help users
easily remove unwanted objects by updating a pre-trained NeRF
model. Given a pre-trained NeRF, the user first draws a mask over
a rendered view. Given the user-drawn mask, our framework first
rendered a couple of views sampled from a pre-set trajectory. Next,
we transfer the user-drawn masks to these sampled views using
existing video object segmentation method [Cheng et al. 2021]. Our
framework then generates (i) guiding color image regions using
[Cao and Fu 2021] and (ii) guiding depth images using Bilateral
Solver [Barron and Poole 2016] within these masked regions. Noted
that our framework can use any existing methods for generating
guiding color and depth images. Finally, we formulate an optimiza-
tion problem that jointly inpaints the image content within the all
transferred masked regions with respect to the guiding color and
depth images.

We demonstrate our framework on several scenes represented
by pre-trained NeRFs in LLFF dataset. We show that our framework
generates visually plausible and consistent results. Furthermore, we
also demonstrate our experiments on the custom dataset to show
the correctness between inpainted results and ground truth results.

2 RELATEDWORK
2.1 Novel view synthesis
Constructing novel views of a scene captured by multiple images is
a long standing problem in computer graphics and computer vision.
Traditional methods use structure-from-motion [Hartley and Zisser-
man 2003] and bundle adjustment [Triggs et al. 1999] to reconstruct
explict point cloud structure and recover camera parameters. Other
methods synthesize novel views by interpolating within a 4D light
fields [Gortler et al. 1996; Levoy and Hanrahan 1996] and by com-
positing the warped layers in the multiplane image representations
(MPI) [Tucker and Snavely 2020; Zhou et al. 2018]. Recently, the
coordinate-based neural representations have shown significant
promise as an alternative to discrete, grid representations for scene
representations. Neural Radiance Fields (NeRF) [Mildenhall et al.
2020] use a multi-layer perceptron (MLP) and positional encoding
to model a radiance field at an unprecedented level of fidelity. How-
ever, NeRF works on a large number of input images and requires
lengthy training time. Many works attempt to reduce the number of
images NeRF requires by introducing depth-supervised loss [Deng

et al. 2021; Roessle et al. 2021] and category-specific priors [Yu
et al. 2021b]. Meanwhile, previous works try to reduce the training
time by optimizing voxel grids of features [Sun et al. 2021; Yu et al.
2021a] and factoring the radiance field [Chen et al. 2022].

These recent advances greatly improve the practical use of NeRF.
However, it is still unintuitive how a user can edit a pre-trained
NeRF model. The main reason is because the neural network of a
NeRF model has millions of parameters. Which parameters con-
trol the different aspects of the rendered shape and how to change
the parameters to achieve desired edtis are still unknown. Previ-
ous works enable users to select certain object [Ren et al. 2022],
edit a NeRF model using strokes [Liu et al. 2021b], natural lan-
guage [Wang et al. 2021a], and by manipulating 3D model [Yuan
et al. 2022] directly. However, these methods require to learn ad-
ditional category-level conditional radiance fields or segmenta-
tion network to facilitate such edits. Unlike these methods, our
framework did not requires the user to prepare any additional
category-specific training data and training procedure for remov-
ing unwanted objects in a pre-trained NeRF model.

2.2 Image inpainting
In recent years, two broad approaches to image inpainting exist.
Patch-based method [Barnes et al. 2009; Efros and Leung 1999;
Simakov et al. 2008] fill the holes by searching for patches with
similar low-level image features such as rgb values. The search
space can be the non-hole region of the input image or from other
reference images. The inpainted results are obtained by a global
optimization after the relevant patches are retrieved. These meth-
ods often fail to handle large holes where the color and texture
variance is high. Meanwhile, these methods often cannot make
semantically aware patch selections. Deep learning-based methods
often predict the pixel values inside masks directly in a semantic-
aware fashion. Thus they can synthesize more visually plausible
contents especially for images like faces [Li et al. 2017; Yeh et al.
2017], objects [Pathak et al. 2016] and natural scenes [Iizuka et al.
2017]. However, these methods often focus on regular masks only.
To handle irregular masks, partial convolution [Liu et al. 2018] is
proposed where the convolution is masked and re-normalized to
utilize valid pixels only. Yu et al. [Yu et al. 2018] uses GAN mecha-
nism to maintain local and global consistency in the final results.
Nazeri et al. [Nazeri et al. 2019] focus on improving the image struc-
ture in the inpainting results by conditioning their image inpainting
network on edges in the masked regions. MST inpainting [Cao and
Fu 2021] and ZITS [Dong et al. 2022] further consider both edge
and line structure to synthesize more reasonable results. In this
work, we use MST inpainting network [Cao and Fu 2021] to obtain
the guided inpainted result because of its superior performance on
inpainting images while preserving structures. Our framework can
replace MST inpainting with other inpainting methods since we
only used the inpainted results as a guiding signal for our optimiza-
tion problem.

3 METHOD
In this section, we first summarize the mechanism of NeRF [Milden-
hall et al. 2020] and formulate our problem setting.
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Figure 2: (a) Given a pre-trained NeRF 𝐹Θ, an user specifies the unwanted region on an user-chosen view with a user-drawn
mask. Our framework sampled initial images and initial depth images and generate both guiding images and guiding depth
images. (b) Our framework update Θ by optimizing both color-guiding loss (𝐿color) and depth-guiding loss (𝐿depth). (→ denotes
render a view from a NeRF model and→ denotes updating Θ by optimizing losses.)

3.1 Preliminaries: NeRF
NeRF is a continuous volumetric radiance field 𝐹Θ : (x, d) → (c, 𝜎)
represented by a MLP network with Θ as its weights. 𝐹Θ : (x, d) →
(c, 𝜎) takes a 3D position x = {𝑥, 𝑦, 𝑧} and 2D viewing direction
d = {𝜃, 𝜙} as input and outputs volume density 𝜎 and directional
emitted color c. NeRF renders the color of each camera rays passing
through the scene by computing the volume rendering intergral
using numerical quadrature. The expected color𝐶 (r) of camera ray
r(𝑡) = o + 𝑡d is defined as:

𝐶 (𝑟 ) =
𝑁∑︁
𝑖=1

𝑇 (𝑡𝑖 ) (1 − exp (−𝜎 (𝑡𝑖 )𝛿𝑖 ))𝑐 (𝑡𝑖 ), (1)

where 𝑇 (𝑡𝑖 ) = exp (−
𝑖−1∑︁
𝑗=1

𝜎 (𝑡 𝑗 )𝛿 𝑗 ) , (2)

where 𝑁 denotes the total quadrature points sampled between near
plane 𝑡𝑛 and far plane 𝑡𝑓 of the camera, and 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖 is the
distance between two adjacent points. We denote the color and
desity at point 𝑡𝑖 produced by NeRF model 𝐹Θ as 𝑐 (𝑡𝑖 ) and 𝜎 (𝑡𝑖 ).

Using the above differentiable rendering equation, we can propagte
the errors and update Θ through mean square error:

L𝑚𝑠𝑒 =
∑︁
r∈R

∥(𝐶𝑐 (r) −𝐶 (r))∥22 + ∥(𝐶 𝑓 (r) −𝐶𝑖 (r))∥22, (3)

where R is a ray batch, 𝐶 (r),𝐶𝑐 (r),𝐶 𝑓 (r) are the ground truth,
coarse volume predicted, and fine volume predicted RGB colors for
ray 𝑟 respectively. For simplicity, we further define 𝐹 image

Θ : o → 𝐼

as a function that takes a camera position (o) as input, and outputs
the rendered image of a pre-trained NeRF model 𝐹Θ.

Figure 3: Our sampling strategy follows the trajectory in (a).
Noted that the target scene faces toward the “+y” directon
as shown in (b). Each blue dot represents a view we can sam-
ple, while the red dot represents the sample view used in
the optimization framework. Also, we use sample images
to construct the point cloud for better understanding. We
conduct all the experiments based on this setting.

3.2 Overview
Given a pre-trained NeRF model: 𝐹Θ, a user can specify the un-
wanted region by drawing a mask 𝑀𝑢 over a user-chosen ren-
dered view 𝐼𝑢 = 𝐹

image
Θ (o𝑢 ), where 𝑀𝑢 = 1 for pixel outside the

masked region, and o𝑢 is the user-chosen camera position. Our
goal is to obtain an updated NeRF model 𝐹Θ̃ such that the un-
wanted region masked by𝑀𝑢 is removed in every rendered views.
As shown in Figure 2, our method first sample 𝐾 camera positions
O = {o𝑠 |𝑠 = 1...𝐾} along the test-set camera trajectory used in
LLFF [Mildenhall et al. 2019] (Figure 3). For each camera position,
we rendered a rgb image 𝐼𝑠 and depth image 𝐷𝑠 using 𝐹Θ and ob-
tained all rendered views I = {𝐼𝑠 |𝑠 = 1...𝐾} and their depth images
D = {𝐷𝑠 |𝑠 = 1...𝐾}. We will use 𝐼𝑠 and 𝐼 (o𝑠 ) to represent the image
rendered from camera position o𝑠 interchangeably throughout the
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paper. One can potentially remove the unwanted object specified
by𝑀𝑢 using the following naive method. First, remove the content
within the transferred masked region on each sampled rendered
view. Then, update Θ using only the image content outside all
transferred masked region by optimizing the “masked mse (mmse)”
function:

𝐿mmse =
∑︁
r∈R

∥(𝐶𝑐 (r) −𝐶 (r)) ⊙ 𝑀 (r)∥22+ (4)

∥(𝐶 𝑓 (r) −𝐶𝑖 (r)) ⊙ 𝑀 (r)∥22,

where𝑀 is the transferred mask on the same view as the sample
ray r. However, because there is no explicit guidance on what
image content and structure should be in the masked region, the
unwanted object will remain in the result of optimizing Equation (5).
To provide explicit guidance, our method takes the user-drawn
mask𝑀𝑢 , sampled rendered views I, and sampled depth images D
as input, and outputs

• guiding user-chosen image and guiding depth image: 𝐼𝐺𝑢 and
𝐷𝐺
𝑢 .

• transferred masks:M = {𝑀𝑠 |𝑠 = 1...𝐾}.
• guiding sampled images and their guiding depth images:
I𝐺 = {𝐼𝐺𝑠 |𝑠 = 1...𝐾} and D𝐺 = {𝐷𝐺

𝑠 |𝑠 = 1...𝐾}.
Finally, our method obtains updated parameters Θ̃ by optimizing
our nerf inpainting formulation: Φ(𝑀𝑢 , 𝐼

𝐺
𝑢 ,M,D𝐺

𝑠 ).

3.3 Guiding material generation
For each sampled rendered view 𝐼𝑠 , our goal is to generate a mask
𝑀𝑠 that covers the same object as the user-drawn mask𝑀𝑢 . We use
a video object segmentation method (STCN) [Cheng et al. 2021] to
generate𝑀𝑠 . With the transferred masks𝑀𝑠 , we need to generate
the guiding images and guiding depth images. The guiding image
generation can be describe as

𝐼𝐺𝑠 = 𝜌 (𝐼𝑠 , 𝑀𝑠 ), (5)

where 𝐼𝐺𝑠 is the guiding image, and 𝜌 is a single image inpainting
method (we usedMST inpainting network [Cao and Fu 2021]). After
obtaining 𝐼𝐺𝑠 , we can obtain the guiding depth image using

𝐷𝐺
𝑠 = 𝜏 (𝐷𝑠 , 𝑀𝑠 , 𝐼

𝐺
𝑠 ), (6)

where 𝐷𝐺
𝑠 is the guiding depth image, and 𝜏 is a depth image com-

pletion method (we used Fast Bilateral solver [Barron and Poole
2016]). Noted that our framework can replace 𝜌 to any other single
image inpainting method and 𝜏 to any other single depth image
completion method.

3.4 NeRF inpainting optimization
We obtain the updated parameters Θ̃ that removes the unwanted
object in the 3D scene by optimizing:

Θ̃ B argmin
Θ

𝐿color (Θ) + 𝐿depth (Θ) (7)

where 𝐿color is the color-guiding loss and 𝐿depth is the depth-guiding
loss.

3.4.1 Color-guiding loss. The color-guiding loss used to is defined
as

𝐿color (Θ) = 𝐿allcolor (Θ) + 𝐿
out
color (Θ), (8)

where 𝐿allcolor is defined on views Oall, 𝐿outcolor is defined on views
Oout, and Oall ∪Oout = {O, o𝑢 }. 𝐿allcolor is used to measure the color
difference of the entire image (inside and outside of the mask) on
the rendered view and is defined as:

𝐿allcolor (Θ) =
∑︁

o∈Oall

𝐹
image
Θ (o) − 𝐼𝐺𝑜 . (9)

𝐿outcolor is used to measure the color difference outside the mask on
the rendered view and is defined as:

𝐿outcolor (Θ) =
∑︁

o∈Oout

(𝐹 image
Θ (o) − 𝐼𝐺𝑜 ) ⊙ 𝑀𝑜 . (10)

In our framework, we set Oall = o𝑢 and Oout = O.

3.4.2 Depth-guiding loss. While we can obtain visual plausible
inpainted color results using the color-guided loss, it often gener-
ates incorrect depth, which might cause incorrect geometry and
keep some unwanted objects in the scene. To fix these incorrect
geometries, we introduce a depth-guided loss, which is defined as:

𝐿depth (Θ) =
∑︁
o𝑠 ∈O

∥𝐷 𝑓 (o𝑠 ) − 𝐷𝐺 (o𝑠 )∥22 + ∥𝐷𝑐 (o𝑠 ) − 𝐷𝐺 (o𝑠 )∥22,

(11)

where 𝐷 𝑓 (o𝑠 ) is the fine volume predicted depth image, 𝐷𝑐 (os) is
the coarse volume predicted depth image, and we rendered both
depth image from a sampled camera position o𝑠 using 𝐹Θ. We
compute the depth 𝐷 𝑓 (o𝑠 ) through computing the accumalation
of 𝜎 from ray batches.

4 EXPERIMENTS AND EVALUATIONS
In this section, we show qualitative results on LLFF [Mildenhall
et al. 2019] dataset and our custom dataset, followed by ablation
studies.

4.1 Implementation detail
We implement our framework in PyTorch [Paszke et al. 2019] and
Python 3.9.We test our framework on amachine with Intel i7-7800X
and a GTX-1080 graphics card to train our models. For each scene,
we first train a model initialized to random weights and optimize it
for 200, 000 steps with a batch size of 4, 096 using Adam [Kingma
and Ba 2014], which takes about 18 to 20 hours. The sample points
used in fine and coarsemodel are 128 and 64, respectively. To inpaint
each scene, we optimize Eq. 7 for 50, 000 steps which takes about
five hours in total.

4.2 Evaluation
4.2.1 Datasets. To verify our framework’s performance, we create
a custom dataset that contains three custom scenes:figyua, desuku,
and terebi. The purpose is to obtain the ground truth results of
NeRF inpainting. For each custom scene, we collect a pair of photo
set, i.e., (original and removed). For original set, we keep all the
objects in the scene and take photos from 24 camera positions. For
removed set, we remove one object in the scene manually and take
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Figure 4: Qualitative comparison - LLFF dataset. For each scene, we show the user-chosen view image and the user-provided
mask on the left. We then show the color image and depth image generated by different methods: our method (ours), baseline1
(b1), and baseline2 (b2). The depth map of b1 still keep depth of the unwanted object. Meanwhile, the color of b2 might cause
noise or shadow on the scene(shown in horns). Our method, compared to these two baselines, have better color and correct
geometry on final results.

photos from the same 24 camera positions. The original sets is
used as the input of our framework, and the removed set is used
as the ground truth of the results after the inpainting optimization.

4.2.2 Experiment setup. As we are the first to free-form inpainting
on NeRF, we propose two baseline methods for comparisons:
baseline1: per-view color updating We update the pre-trained
NeRF model 𝐹Θ with all guiding images I𝐺 by optimizing

Θ̃ B argmin
Θ

∑︁
𝐼𝐺𝑠 ∈I𝐺

(𝐹 image
Θ (o𝑠 ) − 𝐼𝐺𝑠 ) (12)

baseline2: masked mse retraining We re-train a new NeRF
model using all guiding images I𝐺 by optimizing:

Θ̃ B argmin
Θ

∑︁
𝐼𝐺𝑠 ∈I𝐺

(𝐹 image
Θ (o𝑠 ) − 𝐼𝐺𝑠 ) ⊙ 𝑀𝑠 , (13)

where Θ is randomly initialized.
Both baseline1 and baseline2 did not consider depth information
during updating the pre-trained NeRF model or re-train a new NeRF
model.

We compared the inpainted results of our framework to inpainted
results of two baseline methods on LLFF dataset and our custom
dataset described in Section 4.2.1. For LLFF dataset, we perform qual-
itative evaluation by applying three methods on each pre-trained
model. For our custom dataset, we perform both qualitative and
quantitative evaluations. For each scene, we trained two separate
NeRF models for the original set and the removed set. We apply
three methods to the pre-trained NeRFmodel using the original set.
We then compared the inpainted result with the image generated
by the pre-trained NeRF model using the removed set.

4.2.3 Results and discussions.

LLFF dataset We show the qualitative comparison between our
method and two baseline methods using LLFF dataset in Figure 4

and Figure 6. In Figure 4, we observed that the depth maps of the
inpainted NeRF generated by baseline1 did not match the inpainted
image content. In Figure 6, we showed that there are obvious visaul
inconsistencies between views in the results generated by baseline1.
To avoid these visual inconsistency, we choose to provide color
guidance using only the user-chosen view and let the NeRF model
maintain the view consistency by itself. Baseline2 recovers visual
satisfactory image content without any color guidance inside the
masked region. However, baseline2 still generate results that losses
fine structures or synthesize some unnatural patches at complicated
regions, which can be oberserved at Horns and Orchids.
Custom dataset We show the qualitative comparison between
our method and two baseline methods using our custom dataset
in Figure 1 and Figure 5. In Figure 5, we can observe that although
baseline1 can synthesize rgb content closer to ground truth, it still
fail to generate correct depth map. On the other hand, baseline2
recovers the content in the masked region guided by the content
from different views but still creates noisy and blurry content. Our
framework generates closer color and depth images to the ground
truth rendered results compared to the two baseline methods.
Overall, our inpainting optimization updates a pre-trained NeRF
model to obtain correct geometry and preserve visual consistency
across views.

4.3 Ablation study
4.3.1 How important is the depth-guiding loss? Introducing the
depth-guiding loss (𝐿depth) is one of the major contribution of our
framework. We validate its effectiveness by comparing with the
optimization results using color-guiding loss (𝐿color) only, depth-
guiding loss (𝐿depth) only, and both losses.

We showed the results in Figure 7. We observe that optimizing
using 𝐿depth only already leads to correct geometries inside the
masked region but introduces color noises outside the masked
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Figure 5: Qualitative comparison - custom dataset. For each custom secne, we demonstrate the ground truth rendered image,
results generated by our framework, baseline1 (b1), and baseline2 (b2). Our framework generates more accurate depth maps
and synthesize more fine structures compared to baseline1. Compared to baseline2, our framework synthesizes more realistic
and shape results.



基於顏色和深度先驗機率的神經網路輻射場自由修復 Conference’17, July 2017, Washington, DC, USA

Figure 6: Qualitative comparison - visual consistency. The
rendered views generated by baseline1 have severe visual in-
consistency across different views (within the red box region).
Meanwhile, our method synthesize visual consistent results
across different views.

region. Our method optimizes both losses and generate correct
geometries without color noises. In Figure 8, we can also observed
that the unwanted object in the region with high depth variations
can be removed by using 𝐿depth only (red box). However, using
𝐿depth only loses color information in the flat region (blue box).
Our method combines these two losses and remove the unwanted
object without losing color information in the flat region.

4.3.2 How important is color-guiding within the masked regions
from sampled views? In our framework, we only use 𝐿allcolor to guide
the color reconstruction inside the masked regions. We validate this
function design by adjusting the number of views used to compute
𝐿allcolor during the optimization.

We compared the results of following three settings:
(1) only user-chosen view is used to guide the color inside the

masked region, i.e., Oall = o𝑢 and Oout = O.
(2) three sampled views are used to guide the color inside the

masked region, i.e., Oall = {o𝑖 , o𝑗 , o𝑘 } where 𝑖, 𝑗, 𝑘 are ran-
domly sampled, and Oout = {o𝑠 |O − Oall}.

(3) all sampled views (i.e., 24) are used to guide the color inside
the masked region, i.e., Oall = O and Oout = o𝑢 .

As shown in Figure 9, we observe that more visual inconsistency
will be introduced when we use more inpainted images as color
guidance. Our framework obtains stable results formost of the scene
using user-chosen view only; thus, we choose to not to include other
inpainted images in the computation of 𝐿allcolor.

5 LIMITATIONS AND FUTUREWORK
Fuse color and depth guidance. Our framework leverages ex-
isting image inpainting and depth completion method to generate
initial guidance materials. Once there are appearances or geome-
tries artifacts in the initial guidance materials, the optimized NeRF

might output undesired or incorrect results. Meanwhile, our frame-
work shares the same limitations as the image inpainting method
we used. For example, our framework fails to inpaint the image
region with high reflectance content (Figure 10) or with a thin
structure. It is possible to design a fusion method to fuse color and
depth guidances from multiple methods.
Update masks and guidance materials. In our current frame-
work, we used fixed masks and guidance materials during the opti-
mization. However, this is sub-optimal when the unwanted object
is occluded in some views. In the future, we plan to extend our
framework to update the masks in every optimization step using
3D volume features extracted from the NeRF model. We also plan to
use a discriminator to constrain the synthesized results and improve
the view consistency.
Volume feature for mask transferring Our current framework
uses the existing video-based object segmentation method to trans-
fer the user-drawn mask. It is possible to perform mask transferring
by conducting 3D volume segmentation using the volume feature
extracted from the pre-trained NeRF.

6 CONCLUSION
In this paper, we propose the first framework that enables users
to remove unwanted objects or retouch undesired regions in a 3D
scene represented by a pre-trained NeRF. Our framework requires
no additional category-specific data and training. Instead, we for-
mulated a novel optimization to inpaint the pre-trained NeRF with
the generated RGB-D guidances. We demonstrated our framework
handles a variety of scenes well, and we also validate our frame-
work using a custom dataset where ground truth inpainted results
are available. We believe that the custom dataset we proposed and
our framework can foster future research on neural radiance field
editings.
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