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ABSTRACT
This paper presents Cyclops, a single-piece wearable device
that sees its user’s whole body postures through an ego-
centric view of the user that is obtained through a fisheye lens
at the center of the user’s body, allowing it to see only the
user’s limbs and interpret body postures effectively. Unlike
currently available body gesture input systems that depend
on external cameras or distributed motion sensors across the
user’s body, Cyclops is a single-piece wearable device that
is worn as a pendant or a badge. The main idea proposed
in this paper is the observation of limbs from a central lo-
cation of the body. Owing to the ego-centric view, Cyclops
turns posture recognition into a highly controllable computer
vision problem. This paper demonstrates a proof-of-concept
device and an algorithm for recognizing static and moving
bodily gestures based on motion history images (MHI) and
a random decision forest (RDF). Four example applications
of interactive bodily workout, a mobile racing game that in-
volves hands and feet, a full-body virtual reality system, and
interaction with a tangible toy are presented. The experiment
on the bodily workout demonstrates that, from a database of
20 body workout gestures that were collected from 20 partici-
pants, Cyclops achieved a recognition rate of 79% using MHI
and simple template matching, which increased to 92% with
the more advanced machine learning approach of RDF.
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Full-body gesture input; posture recognition; single-point
wearable devices; ego-centric view

ACM Classification Keywords
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INTRODUCTION
Body gestural input has emerged as a popular natural user in-
terface and become widely accessible since the release of Mi-
crosoft Kinect. Recently, more depth-sensing cameras have
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Figure 1. Cyclops is a wearable single-piece bodily gesture input device
that captures an ego-centric view of the user. With Cyclops worn at the
center of the body, the user plays a racing game on the mobile phone
with hand and foot interactions. The user pushes forward an imaginary
gear stick on his right to trigger a nitro turbo.

enabled reliable body tracking, but they have a limited work-
ing distance owing to the cameras’ imaging fields-of-view.

To free users from the location constraints, novel wearable
devices that are dedicated to partial body-centric inputs, such
as arm [20], foot, palm [6], and finger-based [5] touch or
gestural interactions, have been developed and demonstrated.
Other research works have developed full-body motion cap-
ture by distributing motion sensors [19][15][32] around body
parts of the user. However, wearing these sensors is com-
monly inconvenient, even though they are incorporated into
motion-capture suits.

Recent research has developed full-body gestural input using
single devices. Smart phones, for example, have been utilized
for recognizing coarse-grain activities [18] such as walking,
running and sleeping. Allowing for more interactivity, single
wireless units that are carried by users [7] or arm-worn ac-
celerometers [25] have been demonstrated for the recognition
of motion gestures.

Cyclops
We present Cyclops, a single-piece wearable device that sees
a user’s bodily postures through an ego-centric view of the
user. Figure 1 demonstrates the Cyclops device, and an exam-
ple of the device’s view of the user performing hand and foot
interactions in a racing game. This ego-centric view offers
two benefits. First, because Cyclops is fixed on a user’s body,
the ego-centric view presents a registration-free image, allow-
ing body gestural recognition using simple template matching
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Figure 2. Cyclops can be worn around the middle of the body. Different
placements favor head or foot interactions.

and motion history images. Second, a user’s limbs enter the
ego-centric field of view from outside of it, allowing fore-
ground limb extraction to be more independent of cluttered
backgrounds since the limbs are identified as foreground ob-
jects that penetrate the outermost rim of the image.

Figure 2 shows different ways to put on Cyclops as a wearable
device. Displacement of the device toward the upper or lower
body further facilitates head or foot interactions. Users can
move the device according to the task at hand.

Contributions
The main contribution of this paper is the concept of full
body gestural recognition using a fisheye ego-centric view of
the user. To demonstrate the idea, this work (1) presented a
proof-of-concept prototype and (2) evaluated the potential of
the ego-centric view for full-body gestural recognition using
motion history images with template matching and random
decision forest methods.

RELATED WORK
This work concerns body-centric interactions that are identi-
fied using wearable devices, concentrating on full-body ges-
tural recognition with single-point sensing techniques.

Body Inputs Using Wearable Cameras
Body-mounted cameras for monitoring gestural interactions
have been extensively studied. Previous research [22] has
demonstrated that locating cameras at various positions on
the body enables unique interactions. Head-mounted cameras
[24][36][8], for example, yield a mobile interaction space that
is under the user’s perspectives, but they do not support eye-
free interactions. Attaching cameras to the body rather than to
the head or close to the eyes, provides more dedicated interac-
tion spaces. For example, attaching cameras to the shoulders
[13] or chest [23][12], can turn users’ palms into interactive
surfaces, and facilitate hand gestural input. A camera on a
wrist can be used track hand gestures [38][17]. A camera
on a foot, pointing upward [2], provides an interaction space
that incorporates the user’s upper body. However, none of
these developments can be used to sense the motions of feet
so none supports the identification of full-body gestures. The
goal of this work is to identify full-body motion gestures us-
ing single-piece wearable device.

Body Inputs Using Wearable Low-Level Sensing
Light-weight wearable devices, rather than cameras, can be
used in low-level sensing. To make the body a touchable in-
terface, capacitive sensing is integrated with users’ clothing

[28]. Scott et al. [31] proposed the recognition of foot ges-
tures using a phone in a pocket. EarPut [21] instrumented
the ear as an interactive surface for touch-based interactions
using capacitive sensors.

Much research on body input is dedicated to hand-based in-
teractions. Data gloves have been widely studied [35][4] in
the field of HCI, and other techniques have been developed.
Analyzing the sound that bounces through bones [14][26] al-
lows tapping on the skin to be detected by acoustic sensors
that are worn on the arm. SenSkin [27] made the skin into a
touch interface by sensing skin deformation that is caused by
the application of a force tangentially to the skin. PUB [20]
facilitated touch interactions on the forearm by using a dis-
tance sensor on the wrist. Touche [30] enabled discrete hand
gestures using swept frequency capacitive sensing. Saponas
et al. [29] enabled hand gestural interaction by analyzing
forearm electromyography. uTrack [6] enabled touch inter-
action on the palm by magnetic localization. FingerPad [5]
used magnetic tracking to turn the index fingertip into a touch
interface.

Depending on purpose and application, low-level sensing
techniques be implemented on certain parts of the body.
However, full-body motion input requires a body sensor net-
work of sensors that are distributed on body parts [15][16],
which may be inconvenient for users to put on.

Full-Body Gestures Using Single-point Devices
Activity recognition using single-point devices, such as smart
phones, has been widely explored [18][10]. Relevant research
has focused on the coarse-grain classification of daily activi-
ties such as walking, running, sitting, standing, and sleeping,
using inertial sensors in smart phones. Real-time recognition
is not their main concern. More recent research, RecoFit [25]
has allowed repetitive exercises to be recognized in an inter-
active manner using a single arm-worn inertial sensor. Hu-
mantenna [7] enabled the identification of whole-body mo-
tion gestures by treating the human body as an antenna.

A single-point device involves minimal instrumentation. Pre-
vious research in this area, however, suffer from focusing on
only limited motion gesture sets and an inability to detect
static bodily gestures. Owing to its fisheye lens, Cyclops can
recognize a rich set of static and moving full-body gestures.

HARDWARE PROTOTYPE

235-Degree Super Fisheye Lens
The main component of Cyclops is an ultra wide-angle cam-
era that sees the user’s limbs. Figure 3 displays the three
tested types of wide-angle lens. Two are wide-angle lenses
from GoPro1 and Super Fisheye2, and the other is an omni-
directional lens from Omni-Vision3. Each lens is positioned
at the center of the user’s chest, observing him adopting five
body postures.

1http://www.gopro.com/
2http://www.superfisheye.com/
3http://www.omnivision.com/
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Figure 3. Comparison of three wide-angle camera lenses for observ-
ing five bodily gestures. (a) Go-Pro (180 degrees) wearable camera, (b)
SuperFisheye (235 degrees), which was used in the Cyclops prototype
herein, and (c) Omni-Vision, an omni-directional lens.

GoPro is a wearable imaging device that is equipped with
an 180 degrees wide-angle lens, designed to capture the first-
person experience of the wearer. The device can see the user’s
hand gestures but barely observes the user’s head and legs.
The 180-degree images thus obtained are presented as a ref-
erence, to suggest the need for a device with a wider viewing
angle to capture full body interactions. Super Fisheye is the
fisheye lens with the widest field-of-view that we could ob-
tain commercially: it has a 235 degree field-of-view, and so
easily captures the user’s head and legs. Lastly, Omni-Vision,
a omni-directional lens, has the widest field of vision at the
expense of central vision. This omni-directional view clearly
observes all limbs, but not those parts of the limbs that enter
the central region. Accordingly, the Super Fisheye lens was
chosen in the presented implementation owing to its ultra-
fisheye field-of-view.

Enabling 235-Degree Field-of-view
The Raspberry Pi NOIR camera module’s original field-of-
view is about 90 degrees and not wide enough to cover the full
235-degree field-of-vision of the Super Fisheye Lens. Our
previous prototype that used an unmodified NOIR camera
module with the super fisheye lens achieved a field-of-vision
of only 190 degrees. To fully realize the potential of the 235-
degree lens, the original lens of the NOIR camera module
was replaced with an 110-degree lens, as shown in Figure 4.
Specifically, the lens in the NOIR camera module on the left
the figure was removed. A 3D-printed ring-shaped connector
formed a bridge between the 110-degree lens and the 235-
degree lens.

Cyclops Wearable Device
To simplify foreground extraction, Cyclops was implemented
with infrared imaging and active infrared illumination. Al-
though color images could also be used to extract bare body
limbs, they are more affected by various colors of clothing.

Figure 5 presents the components of our hardware proto-
type. The super fisheye lens with its 235-degree field of view

+ + + = 

Figure 4. Cyclops’ ultra-fisheye field-of-view is realized by firstly re-
placing the lens in the NOIR camera module with a 110-degree lens, and
then bridging it with a 235-degree super fisheye lens.

a b 

Figure 5. The Cyclops hardware comprises a super fisheye lens, an in-
frared illuminator around the lens, a Raspberry Pi NOIR camera mod-
ule, and a 9-DOF inertial motion sensor. The Raspberry Pi module can
stream the camera frames wirelessly at interactive speed.

provides an ego-centric view. Five infrared LEDs were at-
tached around that lens to provide uniform illumination. The
Raspberry Pi NOIR camera module captures infrared images
which are then streamed wirelessly to a remote PC for further
image processing. Notably, the Raspberry Pi NOIR camera
module can see both visible and infrared light. To facilitate
the extraction of limbs from images, an 850nm filter is added
to block visible light and only infrared reflection from fore-
ground objects such as limbs is accepted. A nine-DOF inertial
motion sensor (IMU) is utilized to re-orient the fisheye im-
ages such that users need not worry about incorrectly putting
on the wearable device, such as by putting it on upside down.
The orientation data such as pan, pitch and yaw that are ob-
tained by the IMU sensor are also applied in body gestural
recognition in the experiments and applications.

The resulting prototype is packed with a 3D printed case,
measuring about two inches in every dimension (width,
height and length), excluding the Raspberry Pi and mobile
power supply. The flexible data wire that connects the cam-
era module to the Raspberry Pi is 90 cm long, which is long
enough to allow the Raspberry Pi module and a mobile power
supply to be stored in a fanny pack that is worn by the user.

Raspberry Pi streams images from the camera wirelessly
over WiFi using the GStreamer Multimedia Framework.
GStreamer4 provides real-time streaming with an average de-
lay of less than 300ms. In the implementation, a remote lap-
top receives approximately 20 frames per second from Cy-
clops, and the streaming delay is acceptable for our applica-
tions that run at an interactive speed.

RECOGNIZING BODILY GESTURES
Despite extensive research in this area, gesture recognition
remains a challenging problem to solve in computer vision.

4GStreamer: http://gstreamer.freedesktop.org/
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Figure 6. Image processing of the proposed algorithm for labeling com-
ponents in the image as limbs. Accordingly, the limbs are extracted as
a foreground image where they enter the fish-eye image. Notice that the
source image in (a) is re-oriented using the information that is provided
by the IMU.

Owing to its ego-centric image acquisition pipeline, Cy-
clops benefits from a sequence of registration-free input im-
ages from which the essential foreground objects (i.e. limbs)
can be reliably identified using basic image processing tech-
niques. Information about the motion of the user can then
be further encoded into temporal templates in the form of
a low-resolution, grayscale image. This work demonstrates
that such compact representation of human actions is very ef-
fective for gestural recognition and the corresponding image
classification problem can be effectively solved by standard
pattern recognition and machine learning methods.

Based on the similar approach proposed in [37], we also take
advantage of motion history image (MHI) and random deci-
sion forest (RDF) to identify stationary and moving bodily
gestures. In the following, the process of foreground extrac-
tion will firstly be described. Based on this identification of
the foreground limbs, two types of MHI [3] will be generated
to represent the temporal motion in a single image. Bodily
gestures will be shown to be recognized reasonably well us-
ing MHIs with straightforward template matching, and that
the recognition rate can be increased by exploiting the RDF-
based method [33].

Foreground Extraction
Figure 6 illustrates our image pre-processing pipeline. The
basic idea is to extract foreground images from where the
limbs enter the ego-centric view at the edge of the fisheye im-
age. This strategy avoids dealing with non-limb foregrounds
in the central part of the image. Firstly, the source images
(Figure 6a) are re-oriented using the information that is pro-
vided by the IMU. Then, as highlighted in Figure 6b, the pro-
cess is begun from a circular strip at the edge of the fisheye
image. Figure 6c displays a straightened version of the cir-
cular strip. Then, Otsu thresholding is applied to the strip
image to extract the foreground regions that potentially con-
tain limbs. To separately identify limbs that overlap in the
image, a vertical erosion along the length of the strip is per-
formed to remove weak connections. The resulting connected
components are further processed as follows.

From the geometric center of each component in the strip im-
age, its corresponding position in the source image (Figure
6b) is identified, and used as a seed from which a foreground
region is grown by performing image flooding. The Canny
edge map of the source image, as shown in Figure 6d, is uti-
lized to block the flooding operation. Figure 6e presents the
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Figure 7. Examples of dMHI and iMHI that are generated from a
sequence of images of a user performing a workout.

overall foreground image that is obtained by aggregating all
foreground regions. In simple cases, favorable results are ob-
tained even in a cluttered environment. In complex cases,
however, incorporating depth information from the infra-red
image [11] or using a time-of-flight depth camera may be
helpful. The foreground masks are used to compute the MHIs
discussed in the next subsection.

Motion History Image
Briefly, MHI is an image template in which non-zero pix-
els simultaneously record the spatial and temporal aspects of
motion. A larger intensity value indicates more recent mo-
tion and intensity decays over time. MHI and many of its
variations [1] have been extensively investigated in the field
of action recognition. One key factor that affects the per-
formance in MHI is image registration, which constitutes a
difficult problem in the field of computer vision.

Like [37], we adopt two types of MHI in our implementation
- the difference-MHI (dMHI) and the integral-MHI (iMHI).
Specifically, for each incoming frame It at time t in an im-
age sequence, we first resize It into a lower resolution of
75 × 75 and then compute the foreground mask Imt with the
aforementioned foreground extraction algorithm. The dMHI
is obtained by setting the pixels within Imt to 255 and decay-
ing the rest pixels with a constant. To form the iMHI, fore-
ground masks are summed up by

∑k−1
i=0 wk−1−iI

m
t−i, where

wi =
2i

k(k−1) are the weighting coefficients, k is the number
of past frames kept in the history, and i is the frame index.
Figure 7 shows an example of dMHI and iMHI generated
from a sequence of the user performing a workout gesture
(right hand and left leg crunching while standing).

Random Decision Forest for Gesture Classification
RDF is a generic and powerful learning algorithm that has
been used with much success in computer vision and medi-
cal image analysis applications [9]. One of the most notable
examples is the Kinect body tracker [33]. Briefly, a forest
is an ensemble of T decision trees, each comprising internal
and leaf nodes. Each internal node is associated with a split
function fθ and a threshold τ . At test time, for a data point x
arriving at an internal node, its corresponding feature is eval-
uated using fθ and compared to τ . Based on the comparison
result, x is assigned to either the left child or the right child
of the current node. The above operation is repeated until x
reaches a leaf node, where a predictor function is pre-learned
and stored. The final classification of x is made by aggregat-
ing the results of all trees in the forest. In the following, we
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describe two different approaches of applying RDF classifiers
to accomplish gesture recognition with Cyclops.

Standard RDF Classifier
The motion representation of MHI discussed above contains
crucial information for gesture recognition and the frame-
work of RDF-based classifiers [33, 37] can be readily applied
to accomplish this task. Following [37], to classify a pixel x
in a motion template image, we leverage the intensity differ-
ences of MHIs as features, as formulated below,

fu,v(I,x) = I(x+ u)− I(x+ v), (1)

where θ = (u,v) are offset vectors relative to x and I(·) de-
notes the intensity value at a specific pixel location of a given
MHI. The intuition behind this feature selection function is
that it enables fθ to learn the spatial extent and configuration
of body parts in the motion signature image. At training time,
randomly generated offset vectors are evaluated to obtain the
feature values by Equation (1). For each internal node, the
pair of u,v and a corresponding threshold that best separates
the labeled training data are kept. More details on applying
RDF classifier to gesture recognition are referred to [33, 37].

Multi-layered RDF Classifier
In [34, 11], multi-layered decision forests are proposed to
accomplish gesture recognition or depth estimation on mo-
bile devices.The basic idea behind these approaches is to ex-
ploit expert forests trained for a particular task (e.g., roughly
classify an image into several levels of quantized depth) and
only those images corresponding to a particular class are for-
warded to a second forest, trained only on examples from this
class. Each of the forests then needs to model less variation
and hence can be comparatively well performed.

Since Cyclops aims to handle full-body gestures, it is thus
possible for the gesture recognizer to deal with rich and di-
verse gesture types. However, building a training database
that covers all gestural variations to train a single classifier is
a non-trivial but essential task for any machine learning algo-
rithms. Inspired by [34, 11], we also propose a multi-layered
architecture of RDFs with Cyclops. Differing from previous
methods, which focus on a single source of input data (e.g.,
images), our observation is that additional orientation data
captured while actions are being performed are potentially
useful to facilitate the task of gesture classification.

Continuous orientation signatures are particularly useful
when dealing with a specially purposed gesture set, such as
a body workout. These gestures are carefully designed and
very likely to yield distinct patterns of body orientation across
different classes. For example, the orientation signatures of
the standing gestures beginning with horizontal tilting differ
from those of the face-down gestures beginning with a series
of downward tilting. With the built-in IMU module, it is thus
very simple to establish two-layered RDFs for Cyclops.

1. First layer: before training, the gesture set needs to be
roughly divided into N categories according to their ori-
entation patterns. For each motion category, we collect a
set of orientation signatures for training. Specifically, pitch
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Figure 8. Four types of workout exercises. (a) A total of 20 captured
moving and stationary bodily gestures. (b) and (c) shows examples of
dMHIs and iMHIs, respectively, of bodily gestures in workout, as ob-
served by Cyclops.

and yaw angles from n consecutive timestamps are con-
catenated into a vector o ∈ R2n. During training, one di-
mension of o is randomly selected as a feature. In other
words, fθ is equivalent to an axis-aligned hyperplane in
the feature space that separates the incoming data into two
disjoint sets.

2. Second layer: we trainN standard RDF classifiers for each
motion category with the training data limited to the MHIs
belonging to a certain category.

At test time, an orientation signature o′ is firstly classified by
the single first-layer forest. Once the motion category of o′
is determined, the corresponding MHI I ′ is forwarded to the
corresponding second-layer forest, by which the final gesture
type is solely determined.

SYSTEM EVALUATION
To evaluate the performance of Cyclops, we chose to conduct
a study on a body workout data set consisting of a wide va-
riety of full-body gestures. In the following, we describe the
experimental settings, data preparation procedures, and eval-
uation results.

Experimental Settings
The study included 20 exercises, which comprised both mov-
ing exercises and stationary postures, and were categorized
into four types. As presented in Figure 8a, three of the four
types of exercises involved motion; these comprised face-
down (1-5), six standing (6-11), and five lying-down (12-16)
exercises. The last group of exercises involved four stationary
postures (17-20).

In a pilot study, we observed that loose clothing may occa-
sionally block the Cyclops’ view. Additionally, the images
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Figure 9. The Cyclops device is set firmly on the chest mount harness to
fit a wide range of users.

observed by Cyclops from female and male participants dif-
fered greatly, mainly because the camera was easily occluded
by the chests of female participants, below or above which
Cyclops must be worn. Hence, to exclude these unfavorable
factors from evaluation, only male participants were recruited
and asked to be dressed properly.

Participants
Twenty participants were recruited from our department to
perform the workout gesture set. They were aged between 21
and 25 (mean = 24.2, std = 2.95). Their heights (mean = 175.5
cm, std = 5.48 cm), weights (mean = 68.4 kg, std = 10.21 kg),
and BMI values (mean = 22.1, std = 2.92) were recorded.
All participants were able to perform the entire workout set
without any problems.

Training Data Acquisition
At the beginning of this study, every participant received a
10-minute training. The experimenter firstly helped the par-
ticipants put on the Cyclops device, and then explained the
exercises to be performed. To ensure that all participants wore
Cyclops properly, a 3D-printed hinge was made to fix the de-
vice firmly to a chest-mounted harness as shown in Figure 9.
Following the experimenter, the participants had to physically
perform dry runs of all of the workout exercises to ensure that
they fully understood the details.

During the study, a monitor prompted example videos of each
trial exercise to the participants. As soon as the participant
was ready to perform the action, he notified the experimenter.
A beep sound was then played to indicate that the partici-
pant should perform the action; meanwhile both the image
and the accompanying orientation (yaw, pitch, and roll) data,
provided by the IMU sensor, were recorded. Upon complet-
ing an action, the participant had to stay stationary until a
second beep was heard, indicating the end of the recording.
This procedure simplified the segmentation of the captured
data. The above process was repeated for each exercise until
the entire workout set was completed. The participant then
took a rest before performing a second round of the workout.

Each participant performed two rounds of the entire work-
out set, and each exercise in the workout set was performed
twice. Hence, each participant generated 20 (exercises) × 4
(repetitions) = 80 labeled images (either dMHI or iMHI) and
orientation data sequences.

Performance Evaluation
A technical evaluation was carried out to determine the recog-
nition rates achieved by applying 1) basic template matching,
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Figure 10. (a) Recognition rates of workout gestures achieved by Leave-
one-person-out cross-validation with various algorithms. (b)(c) Confu-
sion matrices of gesture recognition obtained using RDF + dMHI and
RDF + iMHI, respectively.

2) standard RDF classifier and 3) multi-layered RDF classi-
fier with both dMHI and iMHI motion signatures. Leave-
one-person-out cross-validation was performed on the work-
out dataset to evaluate the performance of each method. For
each subject, 1520 training images and 80 test images were
utilized to measure the accuracy of the evaluated method to
predict the unknown gestures. The obtained recognition rates
are then averaged to indicate the overall performance.

Notably, a non-gesture class must be included for a determin-
istic classifier like RDF. However, the non-gesture class is
more difficult to define in this study than in the work of [37],
because Cyclops captures full-body gestures. In a body work-
out exercise, some random bodily motions may even partially
coincide with the workout gestures. To limit the uncertainty
that could be introduced by an invalid non-gesture class, the
non-gesture class was not included in this evaluation.

Performance of Template Matching
Served as a baseline approach for comparison, template
matching (TM) is implemented straightforwardly by measur-
ing the distance between two MHI images as the summation
of pixel-wise absolute differences of intensity values. For
each test image, the label of the MHI image in the training
set with the smallest distance is returned as the gesture type.
As shown in Figure 10a, the average recognition rates of ap-
plying template matching to iMHI and dMHI achieved 76.4%
and 79.2%, respectively. This reasonably good performance
is accounted for by the registration-free images captured by
Cyclops, which considerably simplified the recognition tasks.

Performance of Standard RDF Classification
To obtain the standard RDF classifiers, the following param-
eters were used to train a three-tree forest for each of the 20
subjects. For each training image, 2000 sample pixels were
randomly selected as data points. All the data points were
passed to the root node to start the recursive training process.
For each intermediate node, 2000 candidate features gener-
ated by Equation (1) and 50 candidate thresholds per feature
were adopted to determine the best split function. Tree node
splitting stops at the maximal level of 19 or the information
gain is less than a prescribed threshold in terms of Shannon
entropy (we empirically set it to 0.01). In our current C++
implementation, the tree trainer was run on a single core of
i-7 3.4 GHz CPU and training a forest took around six hours.
We have also tried to accelerate RDF training by concurrently
training individual trees with OpenMP. The training time can
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Figure 11. A detachable hinge was designed to offset the placement of
the Cyclops device unfavorably.

be further reduced to between 2 and 3 hours. Since the com-
putation of RDF classifiers mainly involves pixel operations,
we believe that the computation efficiency can be further sig-
nificantly enhanced by GPU acceleration.

As shown in Figure 10a, standard RDF classifier increases
the recognition rates to nearly 90% for both motion signature
representations. Figure 10bc shows the confusion matrices of
recognizing workout gestures using dMHI and iMHI, respec-
tively. The gesture classifier worked generally well for most
classes. The cases of false recognition mainly involved some
face-down and lying-down exercises, which are visually sim-
ilar to their MHI representations and therefore difficult to be
distinguished from each other. In the next evaluation, IMU
orientation data will be utilized to deal with such gestures
more effectively.

Performance of Multi-layered RDF Classification
Before training, the 20 workout exercises were first divided
into three motion categories5. The IMU data associated
with each category are then used to train the first-layer RDF.
Specifically, the following parameters are adopted: number
of trees T = 3, depth = 10, temporal length of orientation
signatures n = 150, 100 candidate features, and 20 candidate
thresholds per feature. Owing to its simplicity, the first-layer
training can typically be completed in just a few seconds. The
second-layer RDFs can be obtained just as the standard RDF
except that the training data set is reduced for each category.

Unlike [11], which obtains depth estimates by aggregating
results from both depth classification and regression forests,
the gesture type is solely determined by the second-layer
RDF in our system. Therefore, a highly accurate first-layer
classifier is essential. Under the same leave-one-person-out
cross validation setting, the first-layer RDF achieved a
relatively high average recognition rate of 98%, indicating
fairly successful coarse-grained classification. Moreover,
we observed a slightly increased average recognition rate
for the second-layer MHI-based classification, indicating
that gesture classification by categories is simplified when
compared with the full workout set. When combined, the
two-layer classifiers achieved an overall recognition rate
of 92.1% and 91.4%, corresponding to dMHI and iMHI
respectively (shown in the green bars in Figure 10a).

5The orientation signatures of stationary gestures are similar to the
other three types of motion gestures, respectively.
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Figure 12. Recognition rates of various gesture recognition algorithms
after offsets are applied to Cyclops. Blue/green bars indicate the perfor-
mance obtained with/without IMU orientation information, respectively.

Applying Offset to Cyclops
In this experiment, the effect of applying an offset to the Cy-
clops device on recognition performance is investigated.

Test Data Acquisition
To acquire data under offset conditions, four detachable
hinges (Figure 11) were fabricated; each introduced a 30-mm
offset from the original location in the up, down, left or right
direction. Ten participants were recruited from the original
participant poolto perform the entire workout set once under
all four offset conditions. The offset data sets were used as
the test sequences, and the non-offset data sets of the same
participants were used to train the RDF classifiers.

Evaluation Results
Figure 12 presents the effects of offsetting the placement of
Cyclops on the human body. Since offsetting the Cyclops’
camera compromises the characteristics of registration-free
images, the fact that the performance of template matching
was considerably degraded is unsurprising. RDF classifiers
still achieved acceptable performance of above 80%. No-
tably, the IMU orientation signature is unaffected regardless
of how the device is displaced. As a result, two-layered clas-
sification consistently improved the overall performance in
all test cases.

EXAMPLE APPLICATIONS
The proposed proof-of-concept device is demonstrated with
four applications - interactive body workout, mobile racing
game, wearable VR gaming and tangible toy interaction.

Interactive Body Workout
Figure 13 shows the interactive body workout application.
The user performs workout routines at home while Cyclops
monitors progress and provides vocal instructions concerning
subsequent actions. For example, Cyclops counts the sit-ups
performed by the user; encourages the user to speed up or
slow down, and, when the exercise is complete, (Figure 13 a-
b), instructs the user to prepare for leg crunches (Figure 13c-
f). Static and motion gesture recognitions are based on the
iMHI+RDF method, as described in the Evaluation section.

Hand and Foot Interactions in Mobile Gaming
Cyclops enriches gaming on mobile devices by incorporat-
ing hand and foot interactions. Figure 14 presents an exam-
ple of a racing game on mobile phones. The user holds the
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Figure 13. Interactive body workout applications track the user’s per-
forming workout exercises, and provide interactive instructions. (a-b)
The workout tracker counts the sit-ups and provides suggestions to help
the user maintain a good pace. (c-f) The tracker provides hints to the
user concerning the next step in a four-step leg crunch exercise.

mobile phone as if holding an steering wheel, and the steer-
ing is monitored by the motion sensors of the phone. Mov-
ing the phone closer to the body results in an engaged view
(Figure 14a), and pushing it away results in a second-person
view (Figure 14b). Pushing the right-hand forward as if push-
ing forward a gear stick triggers nitro turbo (Figure 14c), and
pushing the left leg out brakes the car.

The application is implemented with a VNC client on the
mobile phone, which displays the racing game that is be-
ing run on a remote PC. The same remote PC processes
Cyclops’ video stream, performs gesture recognition using
iMHI+RDF, and feeds back to the racing game with a key-
board simulator.

Wearable VR Snowball Fight Game
Recent developments in virtual reality (VR) have led to im-
mersive gaming with wearable VR headsets such as Ocu-
lus Rift. However, most current interaction methods use
gamepads, or allow limited body input using external image
sensors but they still suffer from the line-of-sight problem.

This application of Cyclops enables the use of omni-
directional body motion gestures in immersive virtual real-
ity gaming. Figure 15 presents a snowball fight game. The
user, wearing Cyclops and an Oculus Rift VR headset, plays
the game in the first-person view. In the game, enemies ap-
pear in all possible directions and throw snowballs toward the
player. User interactions include throwing back snowballs by
swinging one’s arms (Figure 15a), throwing a giant snowball
by swinging both arms (Figure 15b), and avoiding a ball by
squatting or leaning to the left or the right (Figure 15cd).

The application is implemented with Unity3D and Oculus
Rift VR headsets. Cyclops recognizes the player’s motion
gestures using dMHI+RDF and uses the actions to drive cor-
responding action scripts in the Unity3D game. The 9-DOF
IMU of the Cyclops device tracks the player’s orientation
and leaning directions.

a b 

c d 

Figure 14. Hand and foot interaction in a mobile racing game. (a) Mov-
ing the phone closer to the body provides an engaged view. (b) Pushing
the phone away enables a second-person view. Users can (c) push an
imaginary gear stick on his right to trigger nitro turbo, and (d) step to
the left to brake.

Tangible Toy Interaction
Attaching Cyclops to a stuffed toy turns the toy’s body pos-
ture into an interactive controller. Figure 16 demonstrates the
interaction with a display stuffed toy. A mobile display is em-
bedded in the face of the toy. The Cyclops device tracks the
motion gestures of the toy’s limbs using iMHI+RDF and trig-
gers facial expressions using the mobile display on the toy’s
face. Waving its hand causes the toy say ’Hi’ with a smiling
face (Figure 16a). Moving both of the toy’s legs back and
forward displays a running face (Figure 16b).

DISCUSSION AND LIMITATIONS
Cyclops is a single-piece wearable device that allows full-
body posture inputs. We believe that the ultra-wide-angle
view of users’ body gestures will pave the way to a new gen-
eration of wearable motion capture devices. Therefore, this
work seeks to establish the feasibility of this idea by demon-
strating a proof-of-concept prototype. In the following, we
discuss the main challenges and limitations faced by the cur-
rent prototype system in two aspects.

Computer vision challenges
Like all existing vision-based projects, Cyclops faces the
challenges that are typically faced by computer vision tech-
niques, such as cluttered backgrounds and varying lighting
conditions. To mitigate these challenges while validating the
benefits of wearable devices that capture full-body gestures,
Cyclops was implemented using an infra-red camera with ac-
tive illumination, and the experiments were conducted in a
controlled environment. In the future, Cyclops can be real-
ized with advanced depth sensing techniques, such as time-
of-flight distance estimation, to overcome the challenges.

Social acceptance by gender
Previous research [22] has demonstrated that social accep-
tance of wearable devices differs between genders. Female
users were less accepting of Cyclops. In the pilot test, Cy-
clops inevitably yielded more occluded images owing to its
ego-centric view. Female users tended to report feeling un-
comfortable with putting the device on the chest. Currently,
the prototype is relatively bulky. In the future, Cyclops will
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Figure 15. Cyclops supports omni-directional body motion gestures for
immersive virtual reality. (a) The user flings a snowball by swinging his
right arm; (b) throws a giant ball by swinging both arms, and (c)(d)
avoids a ball by squatting or leaning to the left or to the right.

b a 

Figure 16. Attaching Cyclops to a stuffed toy enables a user to interact
with the whole body of the toy. (a) The toy says ’Hi’ with a smiling face
when its hands are waved, and (b) displays a running face when its legs
are made to run.

be made small enough to fit the wearable forms that are pre-
sented in Figure 2.

CONCLUSION
This paper presented a single-piece wearable motion-capture
device. The use of Cyclops, as a proof-of-concept device,
in full-body posture recognition, is demonstrated. The main
contribution is the idea of determining body posture using an
ego-centric perspective of the user, using only a single-piece
motion-capture device.

b a c d 

Figure 17. The strengths and limitations of Cyclops arise from its fisheye
field-of-view. (a-b) Cyclops fails when it cannot see the motion of the
body, such as in ball pitching. (c-d) This problem, however, can be solved
by using another Cyclops that is worn on the back of the user.

Cyclops allows many body postures to be observed, owing
to its fisheye field-of-view. Like other devices that use cam-
eras, however, Cyclops yields uncertain results concerning
postures in which limbs are out-of-sight. Figure 17 shows a
user’s ball-pitching posture. The pulling back of the pitching
hand is invisible to Cyclops. This problem can be solved by
adding another Cyclops to the user’s back, as displayed in
Figure 17. Future works will incorporate into Cyclops a pair
of fisheye lenses in a wearable chest mount, yielding a blind
spot-free wearable motion capture device.
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Gesture spotting with body-worn inertial sensors to
detect user activities. Pattern Recogn. 41, 6 (June 2008),
2010–2024.

16. Keally, M., Zhou, G., Xing, G., Wu, J., and Pyles, A.
Pbn: Towards practical activity recognition using
smartphone-based body sensor networks. In Proc. ACM
SenSys ’11 (2011), 246–259.

17. Kim, D., Hilliges, O., Izadi, S., Butler, A. D., Chen, J.,
Oikonomidis, I., and Olivier, P. Digits: Freehand 3d
interactions anywhere using a wrist-worn gloveless
sensor. In Proc. ACM UIST ’12 (2012), 167–176.

18. Kwapisz, J. R., Weiss, G. M., and Moore, S. A. Activity
recognition using cell phone accelerometers. SIGKDD
Explor. Newsl. 12, 2 (Mar. 2011), 74–82.

19. Lee, J., and Ha, I. Real-time motion capture for a human
body using accelerometers. Robotica 19, 6 (Sept. 2001),
601–610.

20. Lin, S.-Y., Su, C.-H., Cheng, K.-Y., Liang, R.-H., Kuo,
T.-H., and Chen, B.-Y. Pub - point upon body: Exploring
eyes-free interaction and methods on an arm. In Proc.
ACM UIST ’11 (2011), 481–488.

21. Lissermann, R., Huber, J., Hadjakos, A., and
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