
Adaptively Simulating Inhomogeneous Elastic Deformation

Sei Imai1, Yonghao Yue1, Bing-Yu Chen1,2 and Tomoyuki Nishita1
1The University of Tokyo,2National Taiwan University

etoile@nis-lab.is.s.u-tokyo.ac.jp, yonghao@k.u-tokyo.ac.jp, robin@ntu.edu.tw, nis@is.s.u-tokyo.ac.jp

Keywords: deformation, simulation, elastic object, elasticity matrix, inhomogeneous, adaptive simulation

Abstract: In this paper, we present an adaptive approach for simulating elastic deformation of homogeneous and inho-
mogeneous objects based on continuum mechanics. In typical adaptive simulation approaches, the deforming
elastic object is usually subdivided to form a tree structure on the fly. However, they are not directly applicable
for inhomogeneous elastic deformation, since the elasticity matrix, which describes the stiffness, of each ele-
ment in each resolution is difficult to estimate at runtime. Furthermore, as most multi-resolution approaches,
it is usually required that the stiffness of the object should either be uniform all throughout its body or con-
sist of a collection of uniform parts, otherwise the elasticity matrices for the elements in coarse levels cannot
be determined. Hence, we propose a bottom-up sampling approach to estimate the elasticity matrices for all
elements in all levels based on a given stiffness function. Moreover, the subdivision process is also moved to
the off-line preprocessing stage with the elasticity matrix estimation to reduce the runtime computational cost
while achieving the adaptive simulation by adaptively selecting the simulation level on the fly. Therefore, we
can efficiently simulate the deformation of an elastic object even with spatially varying stiffness.

1 Introduction

Physically-based simulation of soft bodies (or
elastic objects),e.g., jelly, is important for movies
and video games. Currently a lot of techniques are
carried out in soft body dynamics in computer graph-
ics. Mass-spring- and particle-based models (e.g.,
(Tu and Terzopoulos, 1994; Lee et al., 1995; Baraff
and Witkin, 1998)) are usually used for interactive
applications (e.g., video games), and more accurate
simulation methods based on continuum mechanics
(e.g., by using FEM, or finite element method) are
mainly used for filming because they can usually pro-
vide higher accuracy results. Since FEM-based mod-
els require heavy calculation, several multi-resolution
approaches like adaptive subdivision techniques (e.g.,
(Debunne et al., 2001; Grinspun et al., 2002)) are pro-
posed.

In general multi-resolution approaches, the input
elastic object is divided into several elements (in our
case, tetrahedra) which form a hierarchical structure.
That is, several sets of elements representing the ob-
ject are constructed for various resolutions (or levels),
and a tree-like (i.e.,parent-children) relationship is es-
tablished between the elements in different levels. A
difficulty in using such approaches for simulating in-
homogeneous elastic deformation is that the elasticity

matrices, which describe the stiffness, of the elements
in different levels may have different values, because
a parent element may contain the children elements
with different stiffness. In typical multi-resolution
methods, a parent element shares the elasticity matri-
ces with its children elements, making that the object
needs to either be uniform or consist of a collection
of uniform parts. Moreover, to achieve the adaptive
simulation in the typical methods, the discretization
(i.e., tetrahedron subdivision) is usually performed on
the fly. However, since the elasticity matrix of each
element in each resolution is difficult to estimate at
runtime, it is hard to directly apply such approaches
for inhomogeneous elastic deformation.

In this paper, we present a bottom-up sampling ap-
proach to estimate the elasticity matrices for all el-
ements in all levels based on a given stiffness func-
tion before performing the simulation. Using the pre-
sented approach, a parent element can consist of the
children elements with different or even continuously
varying stiffness. Moreover, the tetrahedron subdivi-
sion is also moved to the off-line preprocessing stage
with the elasticity matrix estimation to ease the run-
time processes while achieving the adaptive simula-
tion by adaptively selecting the simulation level on
the fly.

Our approach is composed from the off-line pre-

soft

hard
stiffness functionbase tetrahedra model

Input

level 0 model level 1 model

・・・

Tree Structure Construction

level 0 model level 1 model

・・・

Elasticity Matrix EstimationPreprocessing

adaptive level selection

SimulationRun-time

force computation model updating

Figure 1: The overview of our adaptive simulation scheme. The illustration is drawn in 2D for simplicity.

processing and runtime stages. During the prepro-
cessing, the input elastic object is first recursively
subdivided into several tetrahedra to construct the
multi-resolution tree structure while keeping the qual-
ity of the subdivided tetrahedra as good as possible for
stable simulation. Next, based on the given stiffness
function, the elasticity matrices of all elements (i.e.,
tetrahedra) are estimated from fine levels to coarse
levels through a sampling approach. According to
the bottom-up operation, we can acquire the elasticity
matrices of all elements in all levels. At runtime, the
simulating elements are selected adaptively according
to a user-given error-threshold and the strain posed on
the elements with spatially varying stiffness. By using
our approach, we can simulate the deformation of in-
homogeneous as well as homogeneous elastic objects
adaptively.

2 Related Work

There is a considerable amount of research on
elastic deformation simulation in computer graph-
ics (Gibson and Mirtich, 1997; Nealen et al., 2006).
Methods using mass-spring- or particle-based models
(Tu and Terzopoulos, 1994; Lee et al., 1995; Baraff
and Witkin, 1998) are usually used for interactive ap-
plications, such as video games. To obtain more accu-
rate results, one can use the methods that compute the
continuum mechanics. Such methods can be typically
classified to meshless ones (e.g., (Faure et al., 2011))
and finite element methods (FEM). In this paper, we
focus on FEM.

FEM divides the space into small regions utilizing
finite elements like tetrahedra (O’Brien and Hodgins,
1999; Müller et al., 2001) or hexahedra (Capell et al.,
2002). To improve FEM, a large amount of research
has been conducted for the discretization of the in-
put object (e.g., (Shewchuk, 1998) or (Schaefer et al.,
2004)), and for accelerating the computation. To re-
duce the heavy computation cost of FEM, adaptive
subdivision approaches (e.g., (Debunne et al., 2001;
Grinspun et al., 2002; Dequidt et al., 2005)) are usu-
ally used. These approaches subdivide the input ob-
ject according to its strain at runtime. A major prob-
lem of such methods is that they can only be applied

to homogeneous objects.
There are also some methods that can simulate in-

homogeneous elastic objects,e.g., (Chentanez et al.,
2009), but are also time-consuming. One of the
speed-up approaches is numerically coarsening the
linear elastic object (Kharevych et al., 2009). In
this method, the inhomogeneous objects are deformed
with coarsened tetrahedra, and the fine structures are
mapped into the interpolated position. In (Nesme
et al., 2009), the inhomogeneous elastic object is em-
bedded into grids and the grids’ elasticities are com-
puted to achieve inhomogeneous deformation. How-
ever, to the best of our knowledge, there is no adap-
tive approach for simulating inhomogeneous elastic
objects.

3 Adaptive Simulation Scheme

Our method is an adaptive approach and based on
FEM (O’Brien and Hodgins, 1999). In typical adap-
tive simulation methods, the deforming elastic object
is subdivided adaptively on the fly, which usually re-
quires the material of the object to be as uniform as
possible. Unlike such methods, our adaptive simula-
tion scheme moves the subdivision process to an off-
line preprocessing stage (Sec. 3.1) with the elasticity
matrix estimation (Sec. 4) to reduce the runtime sim-
ulation cost (Sec. 3.2 and Sec. 5) as shown in Fig. 1.
Therefore, our approach is constructed from the off-
line preprocessing stage and the runtime simulation
stage.

3.1 Tree Structure Construction

In our off-line preprocessing stage, we first con-
struct the tree structure for the adaptive simulation
scheme while assuming that the input object is al-
ready roughly tetrahedralized1. Based on this input
tetrahedra set, we further recursively subdivide it to
form a tree structure, while keeping the shapes of the
subdivided tetrahedra as “high quality” as possible,
otherwise the simulation will easily diverge at run-

1We believe that this assumption could be improved in
the future.

Tet
1

Tet
2

Tet
3

Tet
11

Tet
111

Tet
112

Tet
12

Tet
121

Tet
122

Tet
21

Tet
211

Tet
212

Tet
221

Tet
222

Tet
311

Tet
312

Tet
321

Tet
322

Tet
22

Tet
31

Tet
32

Tetrahedra front

Base tetrahedra set

Figure 2: Illustration of the tetrahedra tree. The base tetra-
hedra set as the roots is the input tetrahedra set which is also
the coarsest simulation level. Any cut through the interme-
diate tetrahedra forms a specific simulation resolution.

time. Although there are several tetrahedron subdivi-
sion approaches applicable to this tree structure con-
struction, to guarantee the subdivided elements only
consist of tetrahedra, we used a tetrahedron subdivi-
sion approach like (Liu and Joe, 1995).

3.2 Simulation with Tetrahedra Front

For a given tetrahedra tree, we first define a “tetrahe-
dra front” as shown in Fig. 2, which is a cut through
the intermediate tetrahedra to form a specific resolu-
tion for simulation and usually used in mesh simpli-
fication papers (e.g., (Hoppe, 1996)). If the “tetra-
hedra front” contains all leaf tetrahedra, the simu-
lation will be performed in the finest resolution to
achieve the most accurate simulation result. On the
other hand, once the “tetrahedra front” only contains
the “base tetrahedra set”, the simulation will be per-
formed with only the input tetrahedra set (i.e., in the
coarsest level) to achieve the best simulation perfor-
mance. Hence, before performing the deformation
simulation, we have to first decide the “tetrahedra
front” in the tetrahedra tree, in order to maximize the
simulation performance while keeping the simulation
accuracy to achieve the adaptive simulation (detailed
in Sec. 5.2 and Sec. 5.1).

After deciding the tetrahedra front, the object can
be deformed in accordance with the following equa-
tion:

σ = Cε, (1)

which is the Hooke’s law generalized to three-
dimensional case, whereσ,ε ∈ R6 is the strain and
stress vectors, respectively, andC ∈ R6×6 is an elas-
ticity matrix which defines the material (i.e.,stiffness)
of the deforming elastic object2.

2In some literature, the strain, stress and elasticity are
described as tensors, which are equivalent to the formu-

In the deformation simulation, we repeat the fol-
lowing process in each time-step. First, we calcu-
late the strain vectorε of each element (tetrahedron).
Next, we calculate the stress vectorσ with the elastic-
ity matrix C in accordance with Eq.(1). Then, we cal-
culate the acceleration, velocity and position of each
vertex at that time-step. Finally, we perform a proce-
dure described in Sec. 5.3 to handle T-junctions.

4 Elasticity Matrix Estimation and
Valid Range

After the tetrahedron subdivision, our tree struc-
ture contains only tetrahedra. If we finely subdivide
the input elastic object, we can assume that all the
tetrahedra in the finest leveln (i.e.,the leaf tetrahedra)
are nearly uniform, and their elasticity matricesC can
be easily obtained from the given stiffness function3.
Hence, we then need to estimate the elasticity matri-
cesC of the elements (i.e., tetrahedra) in coarse levels
(i.e., level 0 ton−1) through a bottom-up sampling
approach.

Remember that an elasticity matrixC describes
the linear relationship between a stress vectorσ and a
strain vectorε as shown in Eq.(1). This means that if
we know the stress vectorσ given the strain vectorε,
we can compute the elasticity matrixC by solving a
linear equation. Thus, the basic idea of our bottom-up
approach is to first move the tetrahedra in the coarse
level according toε, simulate the deformation in the
fine level, then obtainσ in the fine level and reinter-
pret thisσ as the one in the coarse level. Finally, we
can obtainC from the linear relationship betweenσ
andε in the coarse level. We describe the details be-
low.

4.1 Strain Vector Decomposition

To make the calculation for solving the linear equa-
tion simple, we first decompose the strain vectorε into
six bases as the linear combination form as:

ε =
6

∑
m=1

α(m)ε(m), (2)

wherem= 1, ...,6 is the index of each base,α(m) ∈R
is a scalar ranged in−1 < α(m) < 1, andε(m) is one
of the linear isolated strain vector bases, in which the
m-th element is 1 and others are 0.

lation used in this paper. We used the matrix-vector
form (Zienkiewicz et al., 2005) for simplicity.

3If this assumption is not valid, we could apply numeri-
cal coarsening to compute the elasticity matrices

Next, since the Hooke’s law is linear, we can
further decompose Eq.(1) intoσ = ∑6

m=1 α(m)Cε(m),
and the j-th element σ j of the vector σ can

be represented asσ j = ∑6
m=1 α(m) ∑6

k=1Cjkε(m)
k =

∑6
m=1 α(m)Cjm, whereCjk is one of the elements of

C in the j-th column andk-th row, andε(m)
k is thek-th

element ofε(m). Alternatively, we have

σ =
6

∑
m=1

α(m)Cm, (3)

whereCm is them-th row ofC.

4.2 Elasticity Matrix Estimation

Based on Eq.(3), to determine the elements ofC, for
each rowm, we letα(m) be nonzero andα(m′)(m′ ̸=m)

be zero, and computeCm asCm = σ/α(m). However,
for accurately computingCm, it is not sufficient to use
only a single value ofα(m) for the following two rea-
sons. First,σ obtained from the simulation may con-
tain numerical errors. Second, the linear relationship
Cm = σ/α(m) is only valid for small deformations,
i.e., when |α(m)| is small. Hence, we sample multi-
ple couples of the scalarα(m) for eachε(m) to esti-
mateCm as shown in Fig. 3. From the estimation, we
also obtain a valid range forα(m) such that the linear
relationship is valid (detailed in Sec. 4.3).

To estimate the unknown elasticity matrix of a
tetrahedron in leveln− 1 from the known elasticity
matrices of tetrahedra in leveln, we first, for a base
m, determine a value ofα(m) and let the strain vector
ε = α(m)ε(m) (i.e., for other basesm′ ̸= m, α(m′) = 0).
Then, the vertices in leveln− 1 are moved so that
the strain vector of the parent tetrahedron equals to
the determined strain vectorε. From these vertices,
we initialize the positions of the vertices in leveln as
follows. The vertices in leveln can be grouped into
1) the vertices which have corresponding vertices in
level n− 1, and 2) the other vertices which do not
have. For the former vertices, we fix their positions to
the locations of their corresponding vertices in level
n−1. For the latter ones, their positions are allowed
to move during the process described later and are ini-
tialized using linear interpolation from the vertices in
leveln−1.

After initializing the positions of the vertices in
level n, we simulate the elastic deformation of the
tetrahedra in leveln based on Eq.(1) using the known
elasticity matrices in leveln. In this simulation, only
the positions of the vertices that are allowed to move
are updated. After the stresses are balanced, we then
calculate the stress vectorσ in level n− 1 from the

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

-1.5 -1 -0.5 0 0.5 1 1.5

fi!ed line

sampling data

Figure 3: The relationship betweenα(m) (thex-axis) and a
vector component ofσ (they-axis).

stress vectors in leveln to obtain one sample of the re-
lationship between a stress vector and a strain vector
as one of the blue dots shown in Fig. 3. By changing
the magnitude of the scalarα(m) arbitrarily, we can
obtain multiple samples.

Finally, we can use a straight line to fit the mul-
tiple samples while ignoring some outliers as the red
line shown in Fig. 3, and the slope of the fitted line is
the element of the elasticity matrix of leveln−1.

4.3 Valid Range for Strain Vectors

As described in the previous section, the linear rela-
tionship used for estimating the elasticity matrix is
only valid for small deformations. Hence, the value
of the elementCjm of the elasticity matrix is valid if
the following condition forα(m) is satisfied.

|α(m)Cjm−σ j(α(m))|
|α(m)Cjm|

< T1, (4)

whereT1 is a user-specified threshold,Cjm is the slope
of the fitted line as shown in Fig. 3, andσ j(α(m)) is
the value obtained from the simulation (i.e., one of the
blue dots in Fig. 3). Using only the above condition,
however, results in erroneous conditioning when the
denominator is small. Thus, we also introduce the
following condition.

|α(m)Cjm−σ j(α(m))|< T2, (5)

whereT2 is another user-specified threshold. If either
of the two above conditions is satisfied, we can apply
linear fitting for that range. We denote the lower and

upper bounds of this valid range asα(m)
min and α(m)

max,
respectively, and setT1 = 1.0×10−2 andT2 = 1.0×
10−4 in our experiment.

These two thresholds are the parameters to control
the error bound. If they are set smaller, the allowed
error becomes smaller (i.e., more accurate). Thus, the

valid range will be narrower and the simulation tends
to switch to finer levels more often.

5 Adaptive Level Selection

Our runtime operation consists of three steps: 1)
updating the tetrahedron front; 2) calculating the in-
ternal force and updating the velocity and position of
each node; and 3) adjusting the vertices aligned at
the T-junctions. In step 1), the tetrahedron front is
updated by either replacing children tetrahedra with
their parent tetrahedron, or replacing a parent tetrahe-
dron with its children tetrahedra. We describe the con-
ditions for these replacements in Sec. 5.1 and Sec. 5.2.
For step 2), please refer to (O’Brien and Hodgins,
1999). Finally, the details of step 3) are described in
Sec. 5.3.

5.1 Coarse to Fine Switching

To decide the tetrahedron front for simulation, we first
check if we need to switch a tetrahedron in the tetrahe-
dron front to its children tetrahedra in one finer level
while taking into account the valid range of strain vec-
tor described in Sec. 4.3. For each tetrahedron, we
calculate the strain vectorε posed on the tetrahedron
and decompose it usingε(m) as Eq.(2). Then, if all
α(m) are in their valid ranges,i.e., for all m,

α(m)
min < α(m) < α(m)

max, (6)

we regard the selected level as proper. Otherwise, we
switch this tetrahedron to its children.

5.2 Fine to Coarse Switching

As using a parent (coarse) tetrahedron instead of its
children tetrahedra would introduce errors into the
simulation, switching from fine level to coarse level
needs to be taken carefully, and indeed it is more com-
plex. In our method, we switch to a parent tetrahedron
if the following three conditions are all satisfied.

1. The strain vector of the parent tetrahedron is
within the valid range as Eq.(6).

2. All of the children tetrahedra of the parent tetra-
hedron are contained in the tetrahedra front.

3. All strain vectors of the children tetrahedra are al-
most the same as that of their parent tetrahedron.

The first condition is needed to ensure that the re-
lationship between the strain and stress vectors can
be accurately handled even when we use the coarse
level. The second condition is needed to avoid the

Tet
1

Tet
11

Tet
111
Tet

112

Tet
12

Tet
121
Tet

122

(a)

Tet
1

Tet
11

Tet
111
Tet

112

Tet
12

Tet
121
Tet

122

(b)

Figure 4: (a) A coarse to fine switchable case and (b) an
unswitchable case. The green area is the tetrahedron front
and pink area is the candidate tetrahedron to switch.

(a) (b)

Figure 5: (a) A crack may appear due to the T-junction prob-
lem. (b) The T-junction vertex of the tetrahedra in the fine
level is fixed at the middle point of its corresponding edge of
the coarse tetrahedron to ensure the continuity of the object.

case when finer levels are used to represent one or
more children tetrahedra of the parent tetrahedron, as
shown in Fig.4. In this case, switching to the par-
ent tetrahedron would discard the fine structure which
is needed for a sufficiently accurate calculation. The
third condition is needed to take into account the ac-
tual forces posed on the children tetrahedra. If the
forces largely differ across the tetrahedra, then using
the parent tetrahedron would result in a crude approx-
imation of the forces.

5.3 Handling T-junctions

Tetrahedra in different levels may cause a T-junction
problem as shown in Fig. 5. At the T-junction, there
is a T-junction vertex belonging to the tetrahedra in
the fine level, but is not shared by their parent tetra-
hedron in the coarse level, a crack or overlap may
thus occur. To avoid this problem, we enforce the
T-junction vertex to be fixed at the middle point of
its corresponding edge of the coarse tetrahedron like
other adaptive modeling methods. The procedure of
this enforcement is performed from the coarsest level
toward the finest level.

6 Results

The simulation has been performed on a PC with
an Intel Core X980 3.33 GHz CPU with 8 GB mem-

Figure 6: A comparison of our method (left) and the exist-
ing method (right).

0

100

200

300

400

500

600

700

800

900

1 201 401 601 801 1001 1201 1401

T
h
e
 n

u
m

b
e
r

o
f
te

tr
a
h
e
d
ra

Steps

Finest

Adaptive

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

1 201 401 601 801 1001 1201 1401

E
rr
o
r

Steps

Average
Maximum

Figure 7: (a) The number of tetrahedra between our method
(solid line) and the existing method (dashed line). (b) Com-
putation error of our method. Solid line: average error. Dot-
ted line: maximum error.

ory.
First, we show the comparison between our ap-

proach and the existing method (O’Brien and Hod-
gins, 1999), by simulating a deforming box, which
is fixed on a wall, according to the gravity force as
shown in Fig. 6. At the beginning of the simula-
tion, the box in our approach was mostly composed
of coarse tetrahedra, since the magnitude of the defor-
mation is small for most parts (Fig. 7). A few seconds
later, some parts of the box that moved a lot switched
to a finer level, but the rest parts kept their original
level since the movement is not so large. When the
deformation reached the equilibrium, most parts were
smoothly deformed and the levels they belonged to
were almost the finest.

We also checked the processing time the defor-
mation requires on each update as shown in Fig. 8.
First, since most tetrahedra belonged to the coarsest
level in the beginning of the simulation, the process-

0

1

2

3

4

5

6

7

8

9

1 201 401 601 801 1001 1201 1401

C
o
m

p
u
ta

ti
o
n
 t

im
e
 p

e
r

s
te

p
 [
s
e
c
]

Steps

Finest

Adaptive

(a)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 201 401 601 801 1001 1201 1401

C
o
m

p
u
ta

ti
o
n
 t

im
e
 p

e
r

s
te

p
 [
s
e
c
]

Steps

Finest

Adaptive

(b)

Figure 8: (a)A comparison of the calculation time with our
method (solid line) and the existing method (dashed line).
(b) A zoomed view.

Figure 9: A smooth mesh is embedded in the tetrahedral
structure.

ing time of our method was an order of magnitude
faster than that of the existing method. As the simula-
tion progressed, the level switched to a finer level and
more processing time was required. When all parts
switched to the finest level due to the large deforma-
tion, the calculation time was still competitive to the
existing method.

The computation error between using our adap-
tive approach and using the finest level is shown in
Fig. 7. The error is defined as the difference between
the locations of the vertices when using our adaptive
approach and the finest level. The error is normalized
by dividing the difference by the longest edge length
of the box. The average of the errors is under 0.5%
and the maximum value of the errors is under 1.7%.

For rendering, we want to acquire a smooth result
with the tetrahedral structure used for simulation as
shown in Fig. 9. During the initial step, for each ver-
tex of the embedded smooth mesh, we compute the
corresponding finest tetrahedron the vertex belongs
to, and compute the barycentric coordinates of the
vertex in the tetrahedron. During the rendering step,
the location of each vertex of the embedded smooth
mesh is computed from a liner interpolation using the
barycentric coordinates and the locations of the ver-
tices of the corresponding tetrahedron.

To show a more complicated result, we simulated
a bunny-shaped inhomogeneous jelly according to the
gravity force as shown in Fig. 10. The bunny has a
continuous stiffness distribution, so that the (red col-

(a) (b)

(c) (d)

Figure 10: The simulation of a inhomogeneous bunny-
shaped jelly. The stiffness of jelly is continuously different
from bottom to top. The part around its feet is stiff (red) and
the part around its ears is soft (yellow).

ored) bottom part is stiff but the (yellow colored) top
part is soft. Because of the inhomogeneous stiffness,
the bunny can stand alone thanks to its stiff feet, while
its ears are hanging down from the head since they are
soft.

We also simulated an armadillo-shaped inhomo-
geneous jelly (Fig. 12). In this example, the gravity
force is not applied. The armadillo has a continuous
stiffness distribution from left to right (again, red and
yellow colors indicate more stiff and soft portions).
We applied external forces in the same magnitude on
its right and left hand. Since its right hand is more
soft, with the same magnitude of external forces, it
gets longer than the left hand.

To show a deformation of an object made of parts
with different stiffness, we simulated the deformation
of an inhomogeneous liver according to the gravity
force as shown in Fig. 13. The vessels are stiffer than
other tissues.

Figure 11: The simulation of an inhomogeneous armadillo-
shaped jelly. The stiffness is continuously varying from left
to right. We applied external forces in the same magnitude
on its right and left hand.

Figure 12: (left) The force is applied on its right hand.
(right) The force is applied on its left hand. 400 frame
passed images (top) and 800 frame passed images (bottom).

7 Conclusion and Future work

We proposed an adaptive approach for simulating
elastic deformation of homogeneous and inhomoge-
neous objects based on FEM. A difficulty in using an
adaptive as well as multi-resolution approach for sim-
ulating inhomogeneous elastic deformation is that the
elasticity matrices of the elements in different levels
may have different values, because a parent element
may contain the children elements with different stiff-
ness. Thus, we proposed a bottom-up sampling ap-
proach to estimate the elasticity matrices for the ele-
ments in coarse levels from the children elements with
known elasticity matrices, so that a parent element
can consist of the children elements with different or
even continuously varying stiffness. Moreover, unlike
other typical adaptive simulation methods, which sub-
divided the deforming object adaptively on the fly, we

(a) (b)

(c) (d)

Figure 13: The simulation of liver. The vessels(blue and
red) is stiffer than the other tissues.

moved the tedious tetrahedron subdivision to the off-
line preprocessing stage to ease the burden on the run-
time simulation. Furthermore, we presented an adap-
tive simulation scheme, which selects the appropriate
levels on the fly according to the error-threshold given
by the user and the strain posed on the elements.

Our approach is faster than existing method in
processing time in each time-step when coarser levels
are selected. In the worst case, the processing time is
still comparable to that of the existing methods. Since
we can estimate the elasticity matrices in the coarse
levels through a sampling approach, we believe that
we can also compute the viscosity constants in a sim-
ilar way.

REFERENCES

Baraff, D. and Witkin, A. (1998). Large steps in cloth
simulation. InACM SIGGRAPH 1998 Confer-
ence Proceedings, pages 43–54.

Capell, S., Green, S., Curless, B., Duchamp, T., and
Popovíc, Z. (2002). A multiresolution frame-
work for dynamic deformations. InProceed-
ings of the 2002 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pages 41–
47.

Chentanez, N., Alterovitz, R., Ritchie, D., Cho, L.,
Hauser, K. K., Goldberg, K., Shewchuk, J. R.,
and O’Brien, J. F. (2009). Interactive simulation
of surgical needle insertion and steering.ACM
Transactions on Graphics, 28(3):88:1–88:10.

Debunne, G., Desbrun, M., Cani, M.-P., and Barr,
A. H. (2001). Dynamic real-time deforma-
tions using space & time adaptive sampling.
In ACM SIGGRAPH 2001 Conference Proceed-
ings, pages 31–36.

Dequidt, J., Marchal, D., and Grisoni, L. (2005).
Time-critical animation of deformable solids.
Computer Animation and Virtual Worlds, 16(3-
4):177–187.

Faure, F., Gilles, B., Bousquet, G., and Pai, D.
(2011). Sparse meshless models of complex de-
formable solids.ACM Transactions on Graph-
ics, 30(4):73:1–73:10.

Gibson, S. F. F. and Mirtich, B. (1997). A survey
of deformable modeling in computer graphics.
Technical Report TR97-19, Mitsubishi Electric
Research Laboratories.

Grinspun, E., Krysl, P., and Schröder, P. (2002).
CHARMS: a simple framework for adaptive
simulation. ACM Transactions on Graphics,
21(3):281–290.

Hoppe, H. (1996). Progressive meshes. InACM SIG-
GRAPH 1996 Conference Proceedings, pages
99–108.

Kharevych, L., Mullen, P., Owhadi, H., and Desbrun,
M. (2009). Numerical coarsening of inhomoge-
neous elastic materials.ACM Transactions on
Graphics, 28(51):51:1–51:8.

Lee, Y., Terzopoulos, D., and Waters, K. (1995).
Realistic modeling for facial animation. In
ACM SIGGRAPH 1995 Conference Proceed-
ings, pages 55–62.

Liu, A. and Joe, B. (1995). Quality local refinement
of tetrahedral meshes based on 8-subtetrahedron
subdivision. SIAM Journal on Scientific Com-
puting, 16(6):1269–1291.

Müller, M., McMillan, L., Dorsey, J., and Jagnow, R.
(2001). Real-time simulation of deformation and
fracture of stiff materials. InProceedings of the
2001 Eurographic Workshop on Computer Ani-
mation and Simulation, pages 113–124.

Nealen, A., Muller, M., Keiser, R., Boxerman, E.,
and Carlson, M. (2006). Physically based de-
formable models in computer graphics.Com-
puter Graphics Forum, 25(4):809–836.

Nesme, M., Kry, P. G., Jeřábkov́a, L., and Faure, F.
(2009). Preserving topology and elasticity for
embedded deformable models.ACM Transac-
tions on Graphics, 28(3):52:1–52:9.

O’Brien, J. F. and Hodgins, J. K. (1999). Graphi-
cal modeling and animation of brittle fracture.
In ACM SIGGRAPH 1999 Conference Proceed-
ings, pages 137–146.

Schaefer, S., Hakenberg, J., and Warren, J. (2004).
Smooth subdivision of tetrahedral meshes. In
Proceedings of the 2004 Eurographics/ACM
SIGGRAPH Symposium on Geometry process-
ing, pages 147–154.

Shewchuk, J. R. (1998). Tetrahedral mesh generation
by Delaunay refinement. InProceedings of the
14th Annual Symposium on Computational Ge-
ometry, pages 86–95.

Tu, X. and Terzopoulos, D. (1994). Artificial fishes:
physics, locomotion, perception, behavior. In
ACM SIGGRAPH 1994 Conference Proceed-
ings, pages 43–50.

Zienkiewicz, O., Taylor, R., Taylor, R., and Zhu, J.
(2005). The finite element method: its basis and
fundamentals. The Finite Element Method. El-
sevier Butterworth-Heinemann.

