
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING XX, XXX-XXX (2011)

1

Interactive Dynamic Background Scene Generator
Based on Limited Input Motions*

TSE-HSIEN WANG1, BING-YU CHEN1 AND RUNG-HUEI LIANG2

1National Taiwan University
2 National Taiwan University of Science and Technology

In this paper, an interactive dynamic background scene generating and editing sys-

tem is proposed based on improved motion graph. By analyzing the input motions with
limited frame length and their metadata, our system could synthesize a large amount of
various motions to yield a composing dynamic background scene with unlimited frame
length by connecting the motion pieces through smooth transitions based on their motion
graph layers. The motion pieces are generated by segmenting the input motions and cor-
responding deforming meshes spatially and temporally, while the smooth transitions
connected the motion pieces are obtained by searching the best path in the motion graph
layers according to the specified circumstances. Finally, the result motions are optimized
by repeatedly substituting the motion sub-sequences. To design the dynamic background
scene, users can interactively specify some physical constraints of the environment on
the keyframes, such as wind direction or velocity of flow, or even some simple paths for
characters to follow, and the system can automatically generate a continuous and natural
dynamic background scene in accordance with the user-specified environment con-
straints.

Keywords: motion graph, motion synthesis, motion analysis, background animation

1. INTRODUCTION

Making complicated animations is a tedious work. Even though several techniques,
such as motion capture, can help a lot for generating realistic character motions, to build
a dynamic background scene with a lot of various animation objects is still a
time-consuming task. The dynamic background scene in this paper is defined as a set of
animation objects in one scene except the leading roles (characters) , it usually contains a
lot of animation models with similar but different motions, such as flying birds, running
horses, or some environment parameters, like a huge amount of flags or trees (formed a
forest). The amount of the background animation objects is usually very huge, but it is not
necessary to fine tune their motions in details for mass production.

Because of the characteristics of the large quantity of the background animation
objects, the physical conditions express much clearer on them rather than a few of the
leading roles. For example, the wind direction and wind speed in the scene maybe
observed much easier from a grassland or a forest than from one dog walking through the
field. Therefore, the problem of making a natural and smooth dynamic background scene
is important in animation production. While making a dynamic background scene, we
always want to have similar background objects act according to the same physical
conditions, but behave variously at the same time. For example, we may use duplications

* This paper was partially supported by the National Science Council of Taiwan under the numbers:
NSC98-2221-E-002-140-MY2.

TSE-HSIEN WANG, BING-YU CHEN AND RUNG-HUEI LIANG

2

of trees to make a forest, and manipulate those copies to perform different motions at the
same time. However, to generate such similar but different motions for a huge amount of
animation objects is a tedious task by using current editing tools. Sometimes
physical-based simulation is a possible solution, but not all background animation objects
can be generated by it and some simulation methods are time-consuming.

Another possible approach is to make a loop animation and let each instance play it
at different starting frames. However, people should notice that a simple loop may still
reveal the monotonous of the animation, and it is also difficult to set some constraints for
these instances, such as wind direction or wind speed. To repeatedly play an existed
animation, motion graph [11] provides a suitable technique for motion synthesis. It finds
the transitions between the motion pieces of the original motions as the edges to construct
a directed graph and easily generates new motions by building walks on the graph.
Compared with other motion synthesis methods, motion graph has a higher potential to
handle high-level constraints, since we could simply add or modify certain constraints to
generate new motions through the synthesis phase of the motion graph. However, the
main drawback of the traditional motion graph approaches based methods is that if the
input data is not so sufficient, it may generate non-smooth results. Furthermore, without
considering the environment constraints, the generated motions may not be consistent
with the scene settings and are hardly to be controlled.

Hence, in this paper, we present an improved motion graph method to generate
asynchronous transitions for each kind of background animation objects, therefore
effectively solve the main problem of motion graph which produces weak results when
source data is insufficient. We also use a hill-climbing optimization technique to smooth
the synthesized animation when the constraints are modified. Furthermore, we provide an
interactive high-level keyframe-based editing tool for users to quickly and easily specify
the global environment constraints of the scene and control a large amount of background
animation objects in an easy way. To make our method as general as possible, in our
system, we take the deforming meshes as the input, so that most kind of motions can be
imported into our system, although some information might be lost, such as the skeleton
of articulated characters.

The rest of this paper is organized as the follows. Sec. 2 and Sec. 3 introduces some
related work and the overview of our system, respectively. The major components of our
system are described in Sec. 4, Sec. 5, and Sec. 6. Finally, Sec. 7 and Sec. 8 show some
results, conclusions, and future work.

2. RELATED WORK

Our approach for dynamic background scene generation is related to the data-driven
animation techniques of motion synthesis. Motion synthesis has been widely discussed
and many different approaches have been presented. Li et al. [13] constructed a two-level
statistical model to represent character motions. They used a linear dynamic system (LDS)
to model the local dynamics and used the distribution of the LDS to model the global
dynamics. Chai and Hodgins [6] used a continuous control state to control the dynamics
instead of using discrete hidden states such like LDS. However, the statistical model is
not really suitable for our target background animation models, such like flags or plants,

INTERACTIVE DYNAMIC BACKGROUND SCENE GENERATOR

3

because of their stochastic motions.
Motion graph [11] is one of the data-driven techniques of motion synthesis. The

similar idea is also provided for 2D videos [19], while later comes with many interesting
researches concerning video control [18], panorama composition [1] or other video ap-
plications. There are also many methods applying motion graph for character animation
[2], or to invent new motion structures [5, 12]. Our work is also inspired by the idea of
the motion graph dealing with the background animation models.

Some methods are also proposed for constrained motion synthesis [6, 17, 20]. Ari-
kan et al.’s method [3] searches the motion database to find suitable frames to synthesize
motions that match the annotations. It requires users to annotate the database before syn-
thesis and there are many labels for human actions. Even though our system also requires
users to annotate the motion features, the background animation objects are relatively
simple compared to human characters and the annotation task is also much easier.

Oshita [14] developed a system to synthesize new motions by automatically select-
ing different methods to connect the pieces of motions, whereas we use asynchronous
transitions to reduce the transition errors. James and Fatahalian’s method [9] precomput-
ed the dynamics to build the parameterizations of the deformed shapes and interactively
synthesize the deformable scenes. There are also some methods focused on the analysis
and evaluation of the motion transitions [21, 16]. Most of the motion synthesis methods
emphasize the motion capture data, while we attempt to draw on these methods to gener-
ate a dynamic background scene.

There are also some approaches discussing about large outdoor scenes. Perbet and
Cani [15] used mesh primitives to animate large-scale prairies in real-time. Beaudoin and
Keyser [4] discussed how to improve the simulation time by configuring level of details
(LODs). Diener et al. [7] utilized 2D motion fields extracted from a video to animate 3D
plant models. Zhang et al. [22] also provided a similar method to ours but only consid-
ered tree models.

In this paper, we propose a method to generate a large amount of animation objects
and use motion graph to raise the variances between the duplicated objects, which is ef-
fective for a large dynamic background scene generation. Our strategy drawing on the
motion graph layers to increase the usability of the short source motions is similar to
James et al.’s work [10], which also achieved asynchronous transitions. The major dif-
ference is that in our method, the animation models are segmented semi-automatically
while we also provide an interactive scheme for users to control the whole environment
settings.

3. SYSTEM OVERVIEW

Fig. 1 shows our system flowchart. There are three major stages in our system. They
are motion analysis (left part), scene design (right upper part), and motion synthesis (right
lower part).

In the motion analysis stage (Sec. 4), we take an animation model M with N
vertices and F frames as the input. Since the data may not be so sufficient to provide
possible smooth transitions, we first segment the model M to be S components (Sec.
4.1) according to its vertices’ spatial-temporal variations. Then, for further control pur-

TSE-HSIEN WANG, BING-YU CHEN AND RUNG-HUEI LIANG

4

poses, each frame 1...i F= is annotated with metadata ic C∈ (Sec. 4.2). The metadata
here mean the physical characteristics, e.g., wind direction, which influence the motion of
the animation model, and the metadata annotation is basically performed by the user with
an interactive and interpolation scheme, like the user interface shown in Fig. 6. However,
in some physical-based animation cases, the metadata ic can be automatically assigned
with the physical parameters when the physical-based simulator generated the original
animation model M . Finally, the motion graph jG G∈ is constructed for each seg-
mented component 1...j S= (Sec. 0).

Fig. 1. The system flowchart.

In the scene design stage (Sec. 5), the animation model M can be imported into

our system as many instances M̂ and users can set the environment layout and con-
straints Ĉ through an easy-to-use user interface. Finally, in the motion synthesis stage
(Sec. 6), the background animation scene can be synthesized by using the motion graph
layer(s) G while considering the annotated metadata C and the environment con-
straints Ĉ with a user-specified arbitrary frame length F̂ . The output animation model
M̂ will have the same vertex number, connectivity, and segments as the original anima-
tion model M , but their frame lengths are different (in most cases, F̂ F>).

4. MOTION ANALYSIS

The first phase of our system is motion analysis. In this phase, the system requires
the user to import a source animation model M with annotated physical characteristics
(metadata) C , e.g., wind speed, for further control purposes. Before analyzing the input
animation model M , it will be segmented first according to its vertices’ spatial-temporal
variations. Hence, there are three components in this phase: model segmentation,
metadata annotation, and motion graph construction.

4.1. Model Segmentation

In order to increase the usability of the input animation model's motion and raise the

quality of the generated result, the input model M is first segmented into several com-
ponents. The segmentation process is performed on the geometry of the model first, and
then the over-segmented segments are merged based on the spatial-temporal analysis.

INTERACTIVE DYNAMIC BACKGROUND SCENE GENERATOR

5

The input animation model M is first segmented by using randomized cuts [8].
Since it is a pose sensitive algorithm, we take all frames of the input model into the cal-
culation stage in order to derive the best segmentation result for overall sequence. That is,
the partition function of the input model is obtained by combining the result of every
frame of the input data.

After the spatial cuts, the model is over-segmented as shown in Fig. 2. Since we only
considered the geometry characteristics of the input animation model in the spatial seg-
mentation process, some segmented segments have to be grouped due to their temporal
characteristics. According to our observation, there are two types of segments should be
grouped after the over-segmentation. The first-type segments are those which show high
dependencies to each other, such as the dove’s two legs (Fig. 2 (right)), and the se-
cond-type ones are those generated from useless or too detailed cuts such as the disor-
dered pieces on the flag (Fig. 2 (left)). Hence, we evaluate the motion variance of each
segment for comparing their motion differences. For each segment j , we first calculate
its centroid i

jp at each frame i to form a motion vector jP , which is used to describe
the movement trend of the segment and defined as:

1 2(| |,| |,...,| |)F
j j j j j j jp p p p p p= − − −P ,

where jp is the average of i

jp for all frames 1...i F= .
Then, we use k-means clustering to combine the over-segmented segments into S

clusters (components), where S is determined according to the type of the input data. In
our strategy, we want to have as many clusters as possible, but meanwhile each group
must be distinct to others. Therefore, we iteratively change k from the number of the
over-segmented segments to 1 and stop when the differences between the new clusters are
all larger than a threshold, which is defined as Dα , where D stands for the maximum
difference between each pair of the over-segmented segments and α is a model-dependent
constant (in our experiences, its range is set between 0.7 ∼ 0.9).

Fig. 2. The result of performing randomized cuts. The segmentation result of the flag (left) looks
much more disorderly because we set an over-segmented parameter but the model has no plenty of
trivial boundaries.

After the above segmentation and grouping processes, each vertex could be assigned

to one of the S groups as shown in Fig. 3. By the two-pass analysis, we can not only
semi-automatically separate the original animation model into several components ac-

TSE-HSIEN WANG, BING-YU CHEN AND RUNG-HUEI LIANG

6

cording to their natural structures over sequences, but also can cluster its vertices which
show similar variation during the whole motion sequence. This can help us to construct
the motion graph for each cluster later. Fig. 4 shows other two segmentation results.

Fig. 3. After performing the model segmentation, the input animation model is segmented. The
vertices of the flag (left) and dove (right) models are both separated into two groups. Vertices be-
long to the red cluster have more intense movement than those in the yellow one.

4.2. Metadata Annotation

For further control purposes, it is better to annotate each frame of the original ani-
mation model M , so that the user can use the annotated metadata to control the synthe-
sized instances M̂ of the animation model. If the original animation model M is ani-
mated by a physical based simulator, such as the flag shown in Fig. 3 (left), the metadata

ic C∈ of each frame i is assigned automatically with the physical parameters of the
physical based simulator. However, if the annotation cannot be obtained automatically,
we also provide a user interface for users to annotate the metadata.

If a user tends to annotate the metadata semi-manually, the user can use an arrow to
indicate the velocity and direction of the external forces of the environment like the user
interface shown in Fig. 6. For stationary objects, like plants or flags, as shown in Fig. 3
(left), the arrow represents the flow effect such as the wind; for dynamic objects, like an-
imals or humans, as shown in Fig. 3 (right), it stands for their moving speeds and facing
directions. We define the characteristics annotated by arrows as the metadata of that mo-
tion. A user can just specify the metadata for some keyframes, and then the system will
automatically assign the metadata to the rest frames by simply interpolating the us-
er-annotated metadata.

Hence, for each frame i of the input animation model M , its metadata are defined
as:

(, ,)i i i ic τ φ θ= ,

which is a vector of Cartesian spherical coordinate system, where iτ is determined by
the length of the arrow, and iφ and iθ are set according to the arrow’s direction. The
maximum length of the arrow is set to be fixed, and we normalize iτ to make 0 1iτ≤ ≤
to prevent the ambiguity between different motions and make further computation easier.

INTERACTIVE DYNAMIC BACKGROUND SCENE GENERATOR

7

4.3. Motion Graph Construction

Once we have a segmented animation model M with S groups and annotated
metadata C , we could define the transition cost of every pair of frames to generate the
motion graph layer jG (1...j S=). Since the metadata C may be roughly assigned by
the user, the cost function does not take the metadata into consideration (we will discuss
how we handle the metadata in later sections).

Fig. 4. Other segmentation results. The dog (left) and the plant (right) models are separated into
two and three groups, respectively.

If the input animation model M is composed of F frames, the transition cost
(,)p qD m m between any two frames ,p qm m M∈ is defined as:

()ˆ(,) (,)

n

v p k q k v p k q k
k n

D m m D m mα β+ + + +
=−

+∑ ,

where

2
(,)x p q p qD m m x x= − , ˆ{ , }x v v∈ , n is the window size for calculating the

difference between the two frames p and q , vD represents the position difference of
all vertices between them, and v̂D stands for the velocity difference calculated by the
same strategy. That means, to preserve the dynamics of the motion, we will compare two
subsequences instead of directly comparing two frames as [19].

In addition, we prune the transitions by selecting only the local minimum with a
specified threshold. Moreover, we also drop some useless transitions when | |p q n− ≤ .
Limiting the frames to not jump to their near neighbors would bring us more reliable and
continuous result as shown in Fig. 5.

Besides, we also compute the average playing costs before and after the transition,
which are denoted by (,)pre p qD m m and (,)post p qD m m . These two matrices are calcu-
lated by almost the same equation as Eq. (1). The difference is that (,)pre p qD m m only
concerns about the frames from p n− to p , and (,)post p qD m m relatively computes
from q to q n+ . By comparing the differences between (,)pre p qD m m , (,)post p qD m m ,
and (,)p qD m m , we can determine the number of blending frames when transition from
frame p to frame q as:

()max

| (,) (,) |

max (,), (,)
pre p q p q

pre p q p q

D m m D m m
B

D m m D m m
−

× , (1)

where maxB is the maximum blending frame number and defined as max 0.1B F= in our
experiment, and F is the original frame number of the input motion.

TSE-HSIEN WANG, BING-YU CHEN AND RUNG-HUEI LIANG

8

All the above calculations are performed for each group. Therefore, we would have
a motion graph jG corresponding to each group j after these processes and thus
composite the motion graph layer G of the animation model M .

Fig. 5. The motion graphs are constructed for each segment (cluster). Note that the graph patterns
are obviously different for each segment, which means it is reasonable for the segmentation.

5. SCENE DESIGN

After the motion analysis, the motion graph layer for each input animation model is
constructed. Before using the motion graph layers to synthesize the output animation, we
can now think about the issues of environment control and settings. In this phase, we will
determine the structure of the whole background scene, for instance, how many models
should be placed, where should we put them, and when and what constraints should be
set.

5.1. Scene Setting

Because our goal is to generate a big dynamic background scene, it would be very

possible that we demand for a large quantity of animation models, and there comes the
problem of choosing models, making duplications and locating them. In our system, each
input animation model is stored in a motion template bank when we load it, and every
model imported to the scene from the template bank becomes an individual instance,
which can be translated, rotated, scaled, and animated independently with other instances.

To simplify the laborious work of putting all objects one after another, our system
let the user first draw an enclosed plane through the user interface as shown in Fig. 6, and
then choose the items from the motion template bank and set the amount of them. After-
wards, the system simply uses uniform distribution to place each instance. In order to
prevent penetration artifacts between the instances, the bounding boxes of them are cal-
culated to avoid overlapping.

After placing the instances and specifying the frame length F̂ of the output anima-
tion, the system would synthesize F̂ -frame animation as an initial output with initial
environment constraints. The user can edit the environment constraints to modify the
output animation interactively. The details of synthesizing the output animation will be
discussed in Sec. 6.

5.2. Constraint Specification

INTERACTIVE DYNAMIC BACKGROUND SCENE GENERATOR

9

The second part of the scene design is to set the constraints of the whole environ-

ment through the arrows shown in Fig. 7. These constraints are used to guide the instanc-
es to find the best synthesis paths on their motion graph layers. Like the metadata annota-
tion described in Sec. 4.2, we also use arrows to specify the overall environment con-
straints of the background scene.

There are two types of constraints. The first one is physical force constraint. The user
can draw some arrows at any point of view to form a flow field to control the motion of
the stationary objects. The second type is self-movement constraint, which denotes a
moving style on the ground for character motion (dynamic objects). The lengths and di-
rections of the arrows determine the moving speeds and orientations, respectively.

Fig. 6. The user interface of our system. The user can select animation models from the motion
template bank and assign the amount of them, and then the instances will be placed in the specified
area (the cyan plane). The red arrow shows the initial environment constraints of the scene. In this
example, there are two kinds of animation models, flag and dove.

The difference between the metadata of one animation model and the constraints of
the environment is that every animation model has only one metadata during a smalltime
slot (i.e., one frame), no matter what kind of model it is. This means each animation
model during the small time slot is only affected by only one constraint, like a flag blown
by the wind with a specific wind speed and direction or a dog walking to ward a specific
direction with a specific walking speed. However, for the background scene, every posi-
tion could have different physical forces which will form an environment flow field. Then,
the animation models will be affected by the flow field according to their positions. The
weight of an arrow ka to affect a model (instance) im in the environment is decided by
the inverse of their distance ikd .

6. MOTION SYNTHESIS

After completing the scene settings, the final phase of our system is motion synthesis.
The first pass of motion synthesis is executed when we import the animation models (in-
stances) into the scene. At this time, an initial output animation is generated temporarily.
For dynamic objects, the initial frame is simply set to the first frame of their source be-

TSE-HSIEN WANG, BING-YU CHEN AND RUNG-HUEI LIANG

10

cause the initial physical force constraints have no effects on them. However, for station-
ary objects, we scan the frames of the animation models with a particular range of frames
(0.1F in our experiment, where F is the original frame number of the input motion) at
a time to pick up a motion piece which relatively meets the environment constraints Ĉ ,
and take it as the initial motion segment. Use an initial section instead of one initial frame
could make the motion fit the initial constraints much more smoothly.

Fig. 7. We can add, remove, or modify the control arrows to specify the environment constraints of
the background scene.

Since the environment constraints Ĉ may be different according to the positions in

the scene, the above process should be performed for each instance individually. In the
following description, we will only focus on how to synthesize the motion of one instance
M̂ . For the other instances, the process is the same. After deciding the initial frame, for
each segmented group 1...j S= belongs to M̂ , we detect several edges of motion
graph jG to yield a path connecting the pieces of motions, and then combine the groups
to output M̂ with more than F̂ frames.

After that, the user can specify new constraints or modify existing ones. Once the con-
straints have been specified or changed, the next step is to reproduce a revised version
which corresponds to those constraints Ĉ . We use a repeated subsequence replacing
method similar to [18] to generate the new version. The error function is defined as:

ˆ ˆ ˆ(,) | |p q q qE D m m c c Tα β= + − +∑ ∑ , (2)

where the first and second terms denote the total transition and constraint costs of motion
sequence, T is the number of transitions, ˆ pm and ˆ qm stand for the original frame and
replacing frame respectively, qc and ˆqc are the metadata and environment constraints
of frame q , α determines the relative weight between the motion smoothness and
constraint effectiveness, and β is used to control the number of transitions. Too many
transitions would slightly decrease the continuity but lack of transitions may result in a
monotonous animation. To find the best path, we continuously select a segment of the
motion, and then try to find other paths which could nearly connect the same source
frame and destination frame. The system calculates the error value between paths, if the
error of new path is smaller than exist one, we then attempt to replace it by switching

INTERACTIVE DYNAMIC BACKGROUND SCENE GENERATOR

11

transitions.
The final task is to optimize our result. So far, we only do processing on the single

motion, however, some global optimization could enhance the quality of the result anima-
tion. We examine the neighboring duplications to check if there are pieces of motions that
have too many frames overlapped, and replace the subsequences of those motions to
make more natural motions. This optimization will be done only for some input motions.
If the input motion is too short, trivially the generated duplications would have many
overlapped sections, even if we reproduce the animation again and again. For one gener-
ated animation which connected by many motion pieces, we compare the pieces longer
than 100 frames with the nearest duplication. If there are at least 100 continuous frames
overlapped, we would reproduce the animation.

7. RESULT

All results in this paper are generated on a desktop PC with an AMD Athlon 64
3500+ CPU with 1G memory, and the statistics of models and computation time are listed
in Table 1. The Analysis Time includes model segmentation and motion graph construc-
tion and Synthesis Time shows the time for synthesizing 1,000 frames, which is the same
as traditional motion graph approaches.

Fig. 8 shows the comparison of the original animation data, traditional motion
graph’s and our results (from top to down). From the left to right is the 295th to the
302nd frames. Since the original animation data has only 300 frames, there is an obvious
discontinuity between the 299th and the 300th frames in the upper (source) sequence.
Because the source data is insufficient, by using the traditional motion graph, the result
shown in the middle sequence still has the discontinuity problem between the 298th and
the 299th frames, which is the transition point of both of the traditional motiongraph
method and ours.

(a)295 (b) 296 (c) 297 (d) 298 (e) 299 (f) 300(0) (g) 301(1) (h) 302(2)
Fig. 8. From top to down: source data, flag animation synthesized by traditional motion graph, and
flag animation synthesized by our method. The original flag animation consists of 300 frames, we
pick the pieces of the animation starting from the 295th to the 302nd frames.

Fig. 9 shows a scene with some bamboos and a dove. There are two kinds of bam-

boos in the scene as listed in Table 1. The arrow adhering to the dove controls the walk-
ing direction and speed of it, while another arrow gives the environmental physical force.
People may notice that the movement of the synthesized bamboos in the video may not

TSE-HSIEN WANG, BING-YU CHEN AND RUNG-HUEI LIANG

12

obey the arrows shown in Fig. 9. That is because when the artist made the original
(source) bamboo animation, although there is a specified global wind direction, the bam-
boo is adjusted to not only follow the wind direction but with a little bit ambient motion
to make the bamboo look much more real. Hence, in our system, even a user specifies an
extreme wind speed or wind direction, if there is no such data in the input motion, we
cannot synthesize the desired result. Instead, the most similar motion pieces are selected
and used to meet the requirement as close as possible.

Fig. 9. A composite scene which contains synthesized bamboos (stationary objects) and a synthe-
sized dove (dynamic objects). The red arrows indicate the keyframes. The images are captured
every 100 frames.

Table 1 The source data information. The Groups# indicates the number of segmented
components after processing the model segmentation, and Analysis Time and Synthesis
Time show the time for motion analysis (includes model segmentation and motion graph
construction) and motion synthesis (for 1,000 frames) of each input motion, respectively.

Models Vertex# Triangle# Frame# Group# Analysis Time
(sec.)

Synthesis Time
(sec.)

Dove 215 338 20 2 5.7 0.1
Flag 115 92 300 2 4.4 1.8

Bamboo1 8188 7962 300 4 940.1 4.4
Bamboo2 24732 23052 400 5 2414.8 6.7

8. CONCLUSIONS AND FUTURE WORK

Our contribution could be mainly explained from two aspects. For motion graph
algorithms, we introduce a hybrid segmentation method to enhance its flexibility by sep-
arating the original animation model into several groups according to its vertices' spa-
tial-temporal variations. This method overcomes the bothersome problem of insufficient
source for data-driven motion synthesis techniques. Furthermore, we innovate a scene

INTERACTIVE DYNAMIC BACKGROUND SCENE GENERATOR

13

design interface to take the advantage of motion graph's convenience of high-level control.
Our tool lets the user quickly generate a big scene with a large amount of animation ob-
jects, and could easily dominate the environment by setting some parameters simply
through a pen-drawing user interface.

There are several limitations and future works for this system. In the segmentation
part, we now semi-manually set the number of clusters by changing threshold variables.
The number of clusters affects the result directly and intensely. It may be possible to per-
form some analysis to determine these parameters automatically. Besides, since we do not
take skeleton motion into consideration, we could not benefit from the convenience of
controlling skeleton based models by keyframe editing framework. However, there are
many researches that focus on character motion synthesis. Hence, there is a potential to
merge the character animation with our background scene animation to perform a com-
plete scene design system.

REFERENCES

1. A. Agarwala, K. C. Zheng, C. Pal, M. Agrawala, M. Cohen, B. Curless, D. Salesin,
and R. Szeliski, “Panoramic video textures”, ACM Transactions on Graphics, Vol.
24, 2005, pp. 821-827.

2. O. Arikan and D. A. Forsyth, “Interactive motion generation from examples,” ACM
Transactions on Graphics, Vol. 21, 2002, pp. 483-490.

3. O. Arikan, D. A. Forsyth, and J. F. O’Brien, “Motion synthesis from annotations,”
ACM Transactions on Graphics, Vol. 22, 2003, pp. 402-408.

4. J. Beaudoin and J. Keyser, “Simulation levels of detail for plant motion,” in Pro-
ceedings of SIGGRAPH/Eurographics Symposium on Computer Animation, 2004,
pp. 297-304.

5. P. Beaudoin, M. van de Panne, P. Poulin, and S. Coros, “Motion-motif graphs,” in
Proceedings of SIGGRAPH/Eurographics Symposium on Computer Animation,
2008, pp. 117-126.

6. J. Chai and J. K. Hodgins, “Constraint-based motion optimization using a statistical
dynamic model,” ACM Transactions on Graphics, Vol. 26, 2007, Article No.: 8.

7. J. Diener, L. Reveret, and E. Fiume, “Hierarchical retargetting of 2D motion fields to
the animation of 3D plant models,” in Proceedings of SIGGRAPH/Eurographics
Symposium on Computer Animation, 2006, pp. 187-195.

8. A. Golovinskiy and T. Funkhouser, “Randomized cuts for 3D mesh analysis,” ACM
Transactions on Graphics, Vol. 27, 2008, Article No.: 145.

9. D. L. James and K. Fatahalian, “Precomputing interactive dynamic deformable
scenes,” ACM Transactions on Graphics, Vol. 22, 2003, pp. 879-887.

10. D. L. James, C. D. Twigg, A. Cove, and R. Y. Wang, “Mesh ensemble motion graphs:
Data-driven mesh animation with constraints,” ACM Transactions on Graphics, Vol.
26, 2007, Article No.: 17.

11. L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Transactions on
Graphics, Vol. 21, 2002, pp. 473-482.

12. Y.-C. Lai, S. Chenney, and S. Fan, “Precomputing interactive dynamic deformable
scenes,” in Proceedings of SIGGRAPH/Eurographics Symposium on Computer An-

TSE-HSIEN WANG, BING-YU CHEN AND RUNG-HUEI LIANG

14

imation, 2005, pp. 281-290.
13. Y. Li, T. Wang, and H.-Y. Shum, “Motion texture: a two-level statistical model for

character motion synthesis,” ACM Transactions on Graphics, Vol. 21, 2002, pp.
465-472.

14. M. Oshita, “Smart motion synthesis,” Computer Graphics Forum, Vol. 27, 2008, pp.
1909-1918.

15. F. Perbet and M.-P. Cani, “Animating prairies in real-time,” in Proceedings of the
2001 Symposium on Interactive 3D graphics, 2001, pp. 103-110.

16. P. S. A. Reitsma and N. S. Pollard, “Evaluating motion graphs for character anima-
tion,” ACM Transactions on Graphics, Vol. 26, 2007, Article No.: 18.

17. A. Safonova and J. K. Hodgins, “Construction and optimal search of interpolated
motion graphs,” ACM Transactions on Graphics, Vol. 26, 2007, Article No.: 106.

18. A. Schodl and I. A. Essa, “Controlled animation of video sprites,” in Proceedings of
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2002, pp.
121-127.

19. A. Schodl, R. Szeliski, D. H. Salesin, and I. Essa, “Video textures,” in Proceedings
of SIGGRAPH, 2000, pp. 489-498.

20. A. Treuille, Y. Lee, and Z. Popovi´c, “Near-optimal character animation with con-
tinuous control,” ACM Transactions on Graphics, Vol. 26, 2007, Article No.: 7.

21. J. Wang and B. Bodenheimer, “Synthesis and evaluation of linear motion transi-
tions,” ACM Transactions on Graphics, Vol. 27, 2008, Article No.: 1.

22. L. Zhang, Y. Zhang, Z. Jiang, L. Li, W. Chen, and Q. Peng, “Precomputing da-
ta-driven tree animation,” Computer Animation and Virtual Worlds, Vol. 18, 2007,
pp. 371-382.

Tse-Hsien Wang (汪澤先) received the B.S. degree in Com-
puter Science and Information Engineering from the National
Taiwan University in 2007, and received the M.S. degree in Net-
working and Multimedia also from the National Taiwan Univer-
sity in 2009. His research interests are mainly for computer
graphics.

Bing-Yu Chen (陳炳宇) received the B.S. and M.S. degrees
in Computer Science and Information Engineering from the Na-
tional Taiwan University, Taipei, in 1995 and 1997, respectively,
and received the Ph.D. in Information Science from The Univer-
sity of Tokyo, Japan, in 2003. He is currently a professor in the
Department of Information Management, Department of Comput-
er Science and Information Engineering, and Graduate Institute of
Networking and Multimedia of the National Taiwan University.

INTERACTIVE DYNAMIC BACKGROUND SCENE GENERATOR

15

He is also a visiting researcher and professor in the Department of Computer Science and
Department of Complexity Science and Engineering of The University of Tokyo since
2008. His research interests are mainly for Computer Graphics, Video and Image Pro-
cessing, and Human-Computer Interaction. He is a member of the ACM, ACM SIG-
GRAPH, Eurographics, IEEE, IEICE, IICM, and IPPR, the secretary of the Taipei ACM
SIGGRAPH since 2010, and a steering committee member of the Pacific Graphics since
2011.

Rung-Huei Liang (梁容輝) received the Ph.D. in the De-
partment of Computer Science and Information Engineering, Na-
tional Taiwan University in 1997, Taipei, Taiwan, R.O.C. He is
now an assistant Professor in the Department of Industrial and
Commercial Design, National Taiwan University of Science and
Technology, Taipei, Taiwan, R.O.C. His research interest in-
cludes interaction design, computer graphics and multimedia.

	1. INTRODUCTION
	2. RELATED WORK
	3. SYSTEM OVERVIEW
	4. MOTION ANALYSIS
	4.1. Model Segmentation
	4.2. Metadata Annotation
	4.3. Motion Graph Construction

	5. SCENE DESIGN
	5.1. Scene Setting
	5.2. Constraint Specification

	6. MOTION SYNTHESIS
	7. RESULT
	8. CONCLUSIONS AND FUTURE WORK

