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ABSTRACT
Wedding is one of the most important ceremonies in our
lives. It symbolizes the birth and creation of a new fam-
ily. In this paper, we present a system for automatically
segmenting a wedding ceremony video into a sequence of
recognized wedding events, e.g., the couple’s wedding kiss.
Our goal is to develop an automatic tool for users to effi-
ciently organize, search, and retrieve his/her treasured wed-
ding memories. Furthermore, the event descriptions could
benefit and complement the current research in semantic
video understanding. Technically, three kinds of event fea-
tures, i.e., the speech/music discriminator, flashlight detec-
tor, and bride indicator, are exploited to build statistical
models for each wedding event. Events are then recognized
by a hidden Markov model, which takes into account both
the fitness of observed features and the temporal rationality
of event ordering to improve the segmentation accuracy. We
conducted experiments on a rich set of wedding videos, and
the results demonstrate the effectiveness of our approach.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Indexing meth-
ods; H.4 [Information Systems Applications]: Miscel-
laneous

General Terms
Algorithms

Keywords
Wedding analysis, event detection, video segmentation

1. INTRODUCTION
A wedding ceremony is an occasion that a couple’s families

and friends gather together to celebrate, witness, and usher
the beginning of their marriage. It is a public announcement
of the couple’s transition from two separate lives to a family
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unit. Often, the couples invite some videographers, whether
professional or amateur, to document the wedding as their
treasured memento of the ceremony. In this paper, wedding
videos are defined as the raw, unedited footage recorded for
wedding. Since a wedding video usually spans hours, the
development of automatic tools for efficient content classifi-
cation, indexing, and retrieval becomes crucial.

In this paper, we focus on the recognition of a wedding’s
group actions, namely wedding events, whereby a wedding
is interpreted as a series of meaningful interactions among
the participants. Based on the knowledge of wedding cus-
toms [1, 2], we define thirteen wedding events, such as the
couple’s wedding vows, ring exchange, etc. Our goal is to
automatically segment a wedding video into a sequence of
recognized wedding events. Without loss of generality, we
focus on one of the most popular wedding styles, namely the
western wedding, that follows the basic western tradition [1,
2] and takes place in a church-style venue. Based on our ob-
servations, a wedding video typically consists of four parts:
preparation, guest seating, main ceremony, and reception.
For simplicity, we deal with the third part alone because of
its relative significance. In the rest of this paper the term
wedding refers to the main ceremony.

In the literature, the study of wedding video analysis
has long been ignored. The wedding video is simply to be
treated as one of various content sources in home video re-
searches [3, 4, 5]. However, several characteristics make the
wedding ceremony videos much more challenging to be pro-
cessed and analyzed as indicated in the following:

• Restricted spatial information: Since most of the wed-
ding events occur in a single place (e.g., the front of
a church altar) and participants basically stay mo-
tionless during the ceremony, the conventional scene,
color, and motion based techniques [3, 4, 6] are not
applicable for pre-partitioning a wedding video or for
grouping “similar” shots as the basic unit for further
event recognition. Likewise, most of the other content-
generic visual features such as texture and edge are not
reliable to be utilized.

• Temporally continuous capture: The extraction of bro-
ken time stamps is a widely used technique for generat-
ing shot candidates or event units of home videos [7, 8].
However, to avoid missing anything important, videog-
raphers usually capture a wedding, especially the main
ceremony, in a temporally continuous manner without
any interruption. As a result, the information of tem-
poral logs is not so useful for wedding segmentation.



• Implicit event boundary: Although a wedding cere-
mony follows a definite schedule to proceed, the bound-
aries between wedding events are often implicit and
unclear. For example, a groom’s entering to the venue
is sometimes overlapped with the start of the bride’s
entering. It is uneasy to determine an accurate change
point for separating two events. This phenomenon not
only increases the difficulty of accurate video segmen-
tation but also adds uncertainties in annotating the
event ground truth.

To recognize the thirteen wedding events, we adopt three
kinds of audiovisual features, i.e., speech/music discrimina-
tor, flashlight detector, and bride indicator, as the basic
modules to build our wedding video segmentation frame-
work. Each wedding event is represented with a set of sta-
tistical models in terms of the extracted features. Since these
features are selected based on the understanding of wedding
customs [1, 2], they are more discriminative in distinguish-
ing a wedding’s group actions than the aforementioned ones,
such as motion and textures. To segment a wedding video,
we develop a hidden Markov model (HMM) [9], in which
every hidden state is associated with a wedding event and
a state transition is governed by how likely the two corre-
sponding wedding events take place in succession. The event
sequence is, therefore, automatically determined by finding
the most probable path. In summary, our event recognition
framework not only uses the model similarity of extracted
features, but simultaneously takes the temporal rationality
of event ordering into account.

The main contributions of our work are twofold. First, an
automatic system is proposed and realized for event-based
wedding segmentation. To the best of our knowledge, this
work is the first one to analyze and structure wedding videos
at the semantic-event level. Even on the general domain
of home videos, there is no similar work. The methodol-
ogy could be extensively applied to the other kinds of home
videos that possess similar characteristics as wedding, such
as the birthday party and school ceremonies. Second, a
taxonomy is developed to categorize the wedding events,
whereby we adopted three kinds of discriminative features
for robust event modeling and recognition. A superiority
of these features is that they can be easily extracted from
videos like the conventional ones, e.g., motion. Further-
more, the obtained high-level descriptions could benefit and
complement the current research in semantic video under-
standing.

The rest of this paper is organized as follows. After a
discussion of related work, Section 3 presents the taxonomy
of wedding events. The extraction of event features and the
modeling and segmentation of wedding videos are described
in Section 4 and Section 5, respectively. Section 6 shows
experimental results, and Section 7 presents our concluding
remarks and the directions of future work.

2. RELATED WORK
In this section, we review previous studies on home video

analysis. According to their applications, they are classi-
fied into four major categories: scene-based segmentation,
capture-intent detection, photo-assisted summarization, and
highlight extraction. Meanwhile, their pros and cons as com-
pared with our work will be briefly discussed as well.

Scene-based segmentation. A basic segmentation pro-

cess is to cluster relevant shots into groups called scenes. A
scene is defined as a subdivision of a video in which either
the physical setting is fixed, or when it presents a continu-
ous action in one place [4, 6]. Since the home video content
tends to be close in time, the clustering can be simply con-
fined to adjacent shots. Gatica-Perez et al. [3] proposed a
greedy algorithm that initially treats each shot as a clus-
ter and successively merges a pair of adjacent ones until a
Bayesian criterion is violated. The merging order is deter-
mined through both the visual and temporal similarities,
such as color, edge, and shot duration. Zhai et al. [4] lo-
cated the scene boundaries using the optimization technique
– Markov chain Monte Carlo (MCMC). A color-based simi-
larity matrix is constructed for video shots, from which the
clusters with high intra- and low inter-similarities are de-
tected as the desired scenes.

Capture-intent detection. A capture-intent refers to
an idea, feeling, theme, or message that makes us to cap-
ture certain video segments [5, 10], e.g., a sentimental sun-
set or baby laughing. Since the user’s capture-intent is of-
ten expressed through the use of cinematic principles, some
researchers exploit the theory of computational media aes-
thetics [11]. Achanta et al. [5] proposed a framework for
modeling the capture-intents of four basic emotions, i.e.,
cheer, serenity, gloom, and excitement. An emotion deliv-
ery system is also developed for helping users to enhance the
original or convey a new emotion to a given home video. Mei
et al. [10] further integrated the knowledge of psychology
to classify the capture-intents into seven categories, such as
close-up view, beautiful scenery, just record, etc. A learning-
based mechanism for classifying the capture-intents is then
presented using two kinds of feature sets: attention-specific
and content-generic features.

Photo-assisted summarization. Personal photo albums
can be viewed as an excellent abstract of the corresponding
home videos. They share most of the important moments
but the photo albums are relatively concise in presenting the
contents. Since a still image can be applied to search videos,
the summarization task is transformed into the problem of
template matching between the two media. Aner-Wolf et al.

[12] targeted on wedding videos. They represented each shot
with one or several mosaics that are used to be aligned with
the wedding photos. All shots with successful alignments are
collected to generate a summarized video. Similar ideas are
adopted by Takeuchi et al. [13], but they instead estimated
the user’s general preferences on the summarization.

Highlight extraction. Highlights are the video segments
with relatively higher semantic or perceptual attractions to
users. Since the true understanding of video semantics can-
not be achieved by the current computing technologies, the
study of human attention models provides an alternative
way for detecting perceptual highlights [14, 15]. Hua et

al. [16] proposed a home video editing system, in which
attention-based highlight segments are selected to be aligned
with a given piece of incidental music to generate an edited
highlight video. Meanwhile, a set of professional editing
rules is utilized to optimize the editing quality, e.g., motion
activity should match with music tempo. Abowd et al. [17]
presented a semi-automatic approach for highlight brows-
ing. Home videos need to be manually annotated with a
predefined tag hierarchy that helps to group the highlight
segments with similar semantic meanings, e.g., clips of all
the child’s birthday wishing.



Table 1: Taxonomy of wedding events
Code Event Definition

ME Main Group Entering† Members of the main group walking down the aisle.
GE Groom Entering Groom (with the best man) walking down the aisle.
BE Bride Entering Bride (with her father) walking down the aisle.
CS Choir Singing Choir (with participants) singing hymns.
OP Officiant Presenting Officiants giving presentations, e.g., invocation, benediction, and homily.
WV Wedding Vows Couple exchanging wedding vows.
RE Ring Exchange Couple exchanging wedding rings.
BU Bridal Unveiling Groom unveiling his bride’s veil.
MS Marriage License Signing Couple (with officiants) signing the marriage license.
WK Wedding Kiss Groom kissing his bride.
AP Appreciation Couple thanking to certain people, e.g., their parents or all participants.
ED Ending Couple (followed by the main group) walking back down the aisle.
OT Others Any events not belonging to the above, e.g., lighting a unity candle.

† The main group indicates all persons, except the ones in GE and BE, who are invited to walk down the
aisle, e.g., flower girls, ring bearers, groomsmen, bridesmaids, honorary attendants, officiants, etc.

Figure 1: Sample key-frames of the wedding events.

Overall, some observations can be made from the above
discussions. First, the so-called event is a more semantic
unit for video segmentation as compared with the conven-
tional ones such as frame, subshot, shot, and scene [18, 19].
It represents a stand-alone human activity during a period
of time. However, the relevant studies on home media are
extremely rare as compared with the other kinds of content
sources like sports [18]. Second, the analysis of home media
are mostly from the perspective of a viewer or a videog-
rapher but not the actual owner or participants. Helping
them to explicitly identify what had happened in a video of-
ten seems more crucial than simply indicating where would
be more significant. These observed phenomena motivate
our development of a comprehensive scheme for event-based
video analysis and segmentation.

3. WEDDING EVENT TAXONOMY
According to the western tradition [1, 2], a wedding cere-

mony, whether religious or secular, begins when an assigned
attendant (such as the officiant or the bride’s mother) is
entering down the aisle and ends while the couple is walk-
ing out of the wedding venue. The mid-process may vary
depending on the country, religion, local customs, and the
wishes of the couple, but the basic elements that constitute
the western weddings are almost the same [1, 2]. There-
fore, we define thirteen wedding events as listed in Table 1.
They are carefully specified to be mutually exclusive and
collectively exhaustive. Figure 1 shows sample key-frames.

In addition to the traditions, the common perception of
the relative event importance is also taken into account in
our taxonomy for further applications such as highlight ex-
traction or video summarization. For example, the three en-
tering events (ME, GE, BE) are traditionally to be viewed
as a unity called a processional [1, 2], but they should be ex-
plicitly separated because the couple’s arriving is generally
much more exciting than others. By contrast, we classify
all of the officiants’ formal presentations like invocation and
benediction into a single wedding event (OP), because they
are often invariable in form and the verbal expressions are
basically predictable, often not beyond the scope of invok-
ing the God’s blessing upon the marriage or inspiring the
attendants’ religious spirits. It is evident that they are not
as important as compared to the other ones.

Furthermore, as shown in Table 1, we can find that the
taxonomy roughly follows the procession of a wedding cer-
emony, i.e., from the ME event to the ED event. However,
it should be noted that the actual event ordering is based
on each couple’s own wedding program and certain events
could be repeated or removed in the ceremony. For example,
the OP and the CS events are often interweaved with other
ones. In addition, a simplified ceremony could only contain
four events of WV, RE, MS, and WK.

4. EVENT FEATURE EXTRACTION
Three kinds of audiovisual features are exploited for event

modeling: speech/music discriminator, flashlight detector,



Figure 2: Example of a music signal with (a) its
spectrogram using short-time Fourier transform and
(b) its corresponding line map.

and bride indicator. In this section, we give mathematical
definition for each of them and address the reasons why these
features are adopted.

4.1 Speech/Music Discriminator
Traditionally, some of the wedding events contain purely

speech and others are always accompanied with music [2].
For example, in the OP and the WV events, all participants
keep quiet to listen to an officiant or the couple speaking.
In the CS and the BE events, choir is singing with piano ac-
companiment or selected background music (e.g., Mozart’s
Wedding March) is playing during the event. Obviously, dis-
crimination between speech and music types from recorded
audio plays a key role in wedding event recognition. Because
the recorded audio quality is generally poor and often inter-
fered with environmental sound and background noise, the
selected speech/music discriminator has to be robust enough
to handle such a low-SNR audio input.

Based on some previous studies [20, 21], we choose to use
three audio features to build our discriminator: one-third
energy crossing (OEC), silent interval frequency (SIF), and
music component ratio (MCR) for their empirically stable
performances under various noise types. Note that, in our
approach, the audio track of wedding videos is converted to
the 44 100 Hz mono-channel format first. For simplicity, let
x(n) be a discrete-time audio signal with time index n and
N denotes the total number of samples in the interval from
which features are extracted.

One-third Energy Crossing (OEC). One characteristic
of a speech signal is that the corresponding amplitude has
obvious variations. Given a fixed threshold δ, the number of
audio energy waveform’s crossings over δ is often higher in
a speech than that in a music. In this work, for each audio
track, we empirically set δ to one-third of its whole range
average amplitude. Therefore, OEC is defined as a measure-
ment of the audio’s energy-spectral content as follows:

OEC ,
1

2
·

N
∑

n=2

|signδ(x
2(n)) − signδ(x

2(n − 1))| (1)

where

signδ(a) =







1, a > δ
0, a = δ.
−1, a < δ

(2)

As suggested by the previous work [20, 22], the audio track
is uniformly segmented into non-overlapping 1-second audio
frames. For each audio frame, one feature value is computed

in every 20-ms interval and these 50 short-time feature val-
ues are averaged to generate the representative OEC feature
for that 1-second frame. The same mechanism is used in SIF
extraction, as described in the following paragraph.

Silent Interval Frequency (SIF). Since a speech signal
is a concatenation of a series of syllables, it contains more
pronouncing pauses than a music signal. Therefore, SIF is
defined to measure the silent intervals of an audio signal as
follows [20]:

SIF , I((E < θl)or(E < 0.1Emax and E < θh)or(ZC = 0))
(3)

where I(·) is the indicator function, E is the root mean
square (RMS) of the signal amplitude, Emax is the maxi-
mum RMS value of the whole audio track, and ZC is the
signal zero crossing. To be precise,

RMS ,

√

√

√

√

N
∑

n=1

x2(n) (4)

and

ZC ,
1

2
·

N
∑

n=2

|sign0(x(n)) − sign0(x(n − 1))|. (5)

In addition, the two thresholds θl and θh are empirically set
to 0.5 and 2, respectively. As described in OEC extraction,
we compute a representative SIF feature for each 1-second
audio frame by taking average of 50 short-time SIF values.

Music Component Ratio (MCR). Harmonicity is the
most prominent characteristic of a music signal. A music sig-
nal often contains spectral peaks at certain frequency levels
and the peaks last for a period of time. This can be observed
from the “horizontal lines” in the spectrogram of music, as
shown in Figure 2. MCR is then defined as the average hori-
zontal line number of an audio spectrogram within a second,
and its extraction algorithm can be described as follows:

1. Segment the given audio track into 40-ms audio frames
with a 10-ms overlap between two successive frames.

2. Compute the spectrogram (Figure 2(a)) of the audio
frames using short-time Fourier transform.

3. Convert the spectrogram to a corresponding gray-level
image by taking the absolute values of the Fourier co-
efficients.

4. Construct a line map (Figure 2(b)) from the image
using Sobel operation [23], and a 7-order median filter
is applied to remove outliers along each of the map
rows.

5. Identify all horizontal lines in the line map using Hough
transform [23].

6. For each second, calculate the line number from every
4-pixel-wide windows with 2-pixel advance in the line
map, and take the average of the line numbers as the
final MCR value.

4.2 Flashlight Detector
Wedding attendants, especially the couple’s family mem-

bers and close friends, often take pictures during the cere-
mony, and the number of pictures taken roughly represents



Table 2: Examples of flashlight distributions of four
successive wedding events in a ceremony.∗

1. OP 2. WV 3. RE 4. WK

674 (sec) 234 (sec) 142 (sec) 12 (sec)
19 (times) 55 (times) 8 (times) 73 (times)
0.0282 (Hz) 0.2350 (Hz) 0.0563 (Hz) 6.0833 (Hz)
∗ The third to the fifth rows are the durations, flashlight num-
bers (manually counted) and flashlight densities of the corre-
sponding wedding events, respectively.

the relative importance of a wedding event. Since the occur-
rence of camera flashlights correlates closely with the activ-
ity of picture-taking [24], the estimation of flashlight density
could be an effective visual cue for wedding event discrimi-
nation. Table 2 shows an example of flashlight distributions
of four successive wedding events in a ceremony. We observe
high variance of flashlight distributions among events. For
example, the WK event is merely 12 seconds long, but there
are 73 flashlights. Its density reaches on average 6 times
per second. By contrast, the OP event is of relatively less
importance to the audiences as described in Section 3 and it
contains a small number of flashlights even if it has a much
longer duration.

Specifically, flashlights can be detected from abrupt and
short global frame intensity increases. In home videos, the
durations of flashlights are seldom longer than two video
frames. Therefore, in every 1-second interval, we compute a
feature value of the flashlight density (FLD) as follows:

FLD ,

M−1
∑

t=2

I((f̂I
t − f̂I

t−1 ≥ ε) and (f̂I
t − f̂I

t+1 ≥ ε)) (6)

where M , f̂I
t are respectively the total number of video

frames and the value of average intensity of the frame ft,
and the threshold ε = 5 was suggested by the previous work
[24] for flashlight detection.

4.3 Bride Indicator
As shown in Table 1, the main figures involved in various

wedding events are not the same. For example, groom and
the best man are the main characters in the GE event; the
groom and his bride are the main figures in the RE event.
The main figures’ occurrence pattern gives a visual hint for
the event category. A näıve solution would be to recognize
all figures in videos. That is, however, not an easy task
with today’s technology. Fortunately, there are some sim-
ple trick to detect the bride, arguably the most important
figure in the wedding. According to the western tradition
[1, 2], the bride invariably wears white gown and veil as a
symbol of purity but the others could have some flexibility
in the dress color. Therefore, it is more reliable to indicate
the bride’s appearance using the truth of her wearing white.
However, due to various lighting conditions, the determina-
tion of an accurate “bridal white” is extremely difficult and
often needs a laborious training process as that of skin color
detection [25]. In our current implementation, we compute
an approximate bridal white map for a video frame using
the following procedure:

Figure 3: Example of (a) a video frame with (b)
the thresholded image and (c) the bridal white map
with projection histograms.

1. Convert a video frame ft to the HSI color space [23],
in which the values are within the range of [0,255].

2. Set empirically two thresholds φI
t and φS

t for the in-
tensity and the saturation respectively for the bridal
white:

φI
t = min (240, f̂I

t + 80) and φS
t = 75. (7)

3. Construct a thresholded image Γ̄t from the video frame
using the above two thresholds, e.g., Figure 3(b). The
thresholded image is defined as

Γ̄t(p) =

{

1, if fI
t (p) ≥ φI

t and fS
t (p) < φS

t

0, otherwise
(8)

where p is the pixel coordinate, and fI
t (p) and fS

t (p)
denote p’s intensity and saturation values, respectively.

4. Obtain a bridal white map Γt (cf. Figure 3(c)) by
removing outliers of Γ̄t using a morphological closing
(i.e., erosion followed by dilation) [23]. That is

Γt = Γ̄t ◦ Se (9)

where Se is a disk structuring element whose radius is
5-pixel wide and ◦ denotes the closing operation.

Further, the technique of projection histograms [23] is ap-
plied to improve reliability. Specifically, based on the ob-
servation that the bride roughly appears in the shape of a
white vertical bar (Figure 3(a)), we add a spatial constraint
that the white distribution in the vertical direction should
be wider than that in the horizontal one. Therefore, we
project the bridal white map along the x and y directions
to construct two 1-D histograms (Figure 3(c)), from which
the isolated component with the maximum white ratio is
individually selected. For example, in Figure 3(c), there are
three isolated components in the horizontal histogram but
only one in the vertical one. We compute standard devia-
tions, sx

t and sy
t , of the white distributions for the maximum



components of both axes. In every 1-second interval, a fea-
ture value of the bridal white ratio (BWR) is defined as

BWR ,
1

M

M
∑

t=1

Φ(Γt) · I(sx
t < sy

t ) (10)

where Φ(Γt) returns the white ratio of Γt in terms of white
pixel number with respect to the map size. Note that we
use the average white percentage to avoid making the hard-
decision on whether or not the bride does exist in frames.

5. WEDDING MODELING
The objective of wedding modeling is to estimate the event

sequence of a wedding video. At each time instance, ex-
tracted event features are exploited to recognize the wed-
ding events. On the other hand, a wedding video is a kind
of sequential data. Thus, in wedding modeling, it needs not
only to consider how likely the acquired features match an
event candidate but also the temporal rationality whether
the candidate is appropriate to follow the existing sequence
immediately. Therefore, we use an effective learning tool,
i.e., HMM, to describe the spatio-temporal relations within
a wedding video [9]. In Sections 5.1 and 5.2, we first build
statistical models of the feature similarity and the temporal
ordering for each of the wedding events. Section 5.3 then
devises an integrated HMM framework for both the event-
based analysis and wedding segmentation.

Before we proceed, note that we divide the video uni-
formly into a sequence of 1-second units. The main reason
for uniform pre-segmentation is that we can not use the
conventional video units like shots as the basic units. It is
because shots can’t be reliably obtained using conventional
techniques because of the reasons listed in Section 1. In
addition, simplicity of uniform segmentation makes online
processing possible in the future. For convenience, let E
and F respectively denote the sets of integer enumerations
of the wedding events and the event features, i.e., E = {i|i =
ME, . . . , OT} and F = {j|j = OEC, SIF, MCR, FLD, BWR}.
Given the t-th video unit, let et ∈ E be a state variable that
indicates the occurrence of a specific wedding event, and

xt = (x1
t , . . . , x

|F |
t ) be the feature vector associated with the

adopted event features xj
t .

5.1 Wedding Event Modeling
For each of the wedding events, a statistical feature model

is constructed for each of the adopted event features. Specif-
ically, a feature model is a probability distribution describ-
ing the likeness of feature values. The use of statistical his-
tograms [23] is a straightforward approach, but their discrete
nature often causes unwanted discontinuity in results, espe-
cially when a feature value locates near the boundaries of
histogram bins. Instead, we accumulate the probability by
regarding each feature sample as a Gaussian centered at its
own feature value. Assume that, for the i-th event, we have
N value samples of the j-th feature {xj

1, . . . , x
j
N} extracted

from training clips. The distribution pi,j of the j-th feature
for the i-th event can then be obtained as follows:

pi,j(x) =
1

N

N
∑

n=1

1

λj

√
2π

e−(x−xj
n)2/2(λj)2 , ∀i ∈ E, ∀j ∈ F

(11)
where

∫ ∞

x=−∞
pi,j(x)dx = 1 and λj is a confidence parame-

ter specifying how we trust the extracted values of the j-th

Figure 4: Examples of wedding event models of (a)
the RE event and (b) the WK event.

feature. If the extracted feature samples are more accurate
and reliable, we can set the parameter to a smaller value.

Since the feature models are used for discriminating the
wedding events, the divergence among feature models of dif-
ferent events should be as large as possible. Quantitatively,
the divergence of two probability distributions is defined by
the symmetric Kullback-Leibler (SKL) distance [26]:

DSKL(p,q) =
1

2

∫

y

[

p(y) log
p(y)

q(y)
+ q(y) log

q(y)

p(y)

]

dy

(12)
For the j-th feature, the confidence parameter λj is chosen
to maximize the sum of divergences among the same kind
of feature models as follows:

λj = arg max
λ

∑

i<k,i,k∈E

DSKL(pi,j , pk,j), ∀j ∈ F (13)

To find the optimal λj , we use exhausted search and em-
pirically set a search range (e.g., [0, 1]) with a desired pre-
cision (e.g., 0.05). The optimal confidence parameters we
found are λOEC = 0.005, λSIF = 0.015, λMCR = 0.5, and
λBWR = 0.01. It is worthy to notice that the FLD feature is
an exception because its values are discrete. As a result, we
manually set λFLD = 0 and apply a 9-point normalized fil-
ter to sample sequences of the FLD feature as an alternative
to the Gaussian-based smoothing.

Therefore, given a video unit (e.g., the t-th one), we can
compute the probability that we observe xt given this video
unit belongs to the i-th wedding event:

p(xt|et = i) =

|F |
∏

j=1

pi,j(x
j
t), ∀i ∈ E. (14)



Table 3: An adjacency matrix of the wedding events.
ME GE BE CS OP WV RE BU MS WK AP ED OT

ME 1 1 1

GE 1 1 1

BE 1 1 1

CS 1 1 1 1

OP 1 1 1 1 1 1 1 1

WV 1 1 1 1

RE 1 1 1 1

BU 1 1

MS 1 1 1 1

WK 1 1 1 1 1

AP 1 1 1 1

ED 1

OT 1 1 1 1

Note that in practice we compute the log-likelihood by tak-
ing logarithm of the expression, and thus can give a contribu-
tive weight κj to the j-th feature model where

∑

j κj = 1.
Overall, the proposed event modeling has several advan-
tages. First, it has more tolerance to inaccuracy and un-
certainty of the extracted event features. The Gaussian
component helps to reduce and diversify the influence of
an inaccurate feature value. Second, it avoids the artifacts
due to quantization errors in the constructed feature mod-
els. The distribution of feature values is faithfully presented
without approximation. Figure 4 gives examples of feature
statistical models for two wedding events, RE and WK.

5.2 Event Transition Modeling
The event transition model (ETM) is constructed to de-

scribe the probability that a wedding event is immediately
followed by another in a wedding ceremony. In other words,
it evaluates whether a temporal transition is to be allowed
between each pair of the wedding events. Therefore, the
ETM can be defined by an |E| × |E| matrix A as follows:

Ai,k = Pr(et = k|et−1 = i), ∀i, k ∈ E (15)

where Ai,k is the entry of the i-th row and the k-th column
of A, and t − 1, t are two successive time instances in sec-
onds. Since all possible transitions are enumerated in A, the
marginal probability along each row is unity:

|E|
∑

k=1

Ai,k = 1, ∀i ∈ E. (16)

In fact, given a training set of wedding videos with the
event ground truth, we can tabulate an approximation of
the ETM, namely Ã. However, the obtained probability
distributions are often extremely biased. That is, most of
the probabilities are prone to centralize on the diagonal en-
tries, i.e., Ãi,i. This phenomenon is due to the transitions
are counted in seconds. For example, assuming that we have
two successive events which are both 100 seconds long, only
one event transition will be accounted during this 200-second
period. Therefore, for each row of Ã (e.g., the i-th one), we
exploit a regularization to balance the probabilities:

Ai,k =

{

ωiÃi,k , i = k

(1 − ωiÃi,i/1 − Ãi,i) · Ãi,k , i 6= k
, ∀k ∈ E

(17)
where ωi is the regularization factor in the range of [0, 1]. To
be precise, we shift some of the diagonal probabilities to the
off-diagonal ones but keep their relative ratios unchanged.
Empirically, all of the diagonal entries are regularized to take
approximate 80% probabilities along each row, i.e., Ai,i ≈
0.8, after regularization.

Figure 5: A simplified example of the HMM for wed-
ding segmentation. (See Subsection 5.3 for details.)

Table 3 shows a simplified version for the real ETM we
learnt from training videos, called an adjacency matrix, in
which the entries with nonzero probabilities in the original
ETM are marked as “1” in A. Sparsity of the adjacency ma-
trix shows that few kinds of event transitions are allowed.
It also demonstrates the occurrence of wedding events has
a strong temporal correlation. This fact reduces the com-
putation cost and increases the reliability of the determined
event sequence.

5.3 Wedding Segmentation Using HMM
HMM is a specific instance of state space models, in which

the concept of hidden states is introduced to recognize the
temporal pattern of a Markov process [9]. Since the sequence
of wedding events can be viewed as a first-order Markov data
as seen in Section 5.2, we exploit an HMM framework for
segmenting wedding videos, in which the wedding event sta-
tistical models (Section 5.1) and the event transition model
(Section 5.2) are integrated together.

Specifically, given an input wedding video V , it is first
partitioned into N 1-second video units, V = {v1, . . . ,vN}.
For each video unit vt, t ∈ {1, . . . , N}, we have a set of |F |
event features associated with it, i.e., xt = (x1

t , . . . , x
|F |
t ).

Collecting all the observations X = {x1, . . . ,xN}, our goal
is to find the most probable event sequence S for V , where
S = {e1, . . . , eN}. Therefore, we develop a left-to-right
HMM of |E| states {ei|i ∈ E}, in which each state corre-
sponds to one of the adopted event categories. The HMM
is governed by a set of parameters, θ = {π, A, φ}, where
π, A, and φ define the initial state probabilities, the state
transition probabilities, and the emission probabilities, re-
spectively [9]. Figure 5 illustrates a trellis representation of
an simplified HMM with only three states. Clearly, φ and
A have been explicitly described by the wedding event mod-
els and the event transition model, respectively. Without
loss of generality, π is given by a uniform distribution, i.e.,
p(e1 = i|π) = 1/|E|, ∀i ∈ E. Accordingly, our goal to find
the optimal sequence S formulated as

S = arg max
s

Pr(X, S|θ)

= arg max
s

p(e1|π)

[

N
∏

t=2

p(et|et−1, A)

]

N
∏

t=2

p(xt|et, φ)

= arg max
s

p(e1|π)

[

N
∏

t=2

Aet−1,et

]

N
∏

t=2

|F |
∏

j=1

pet,j(x
j
t) (18)

where the second and the third terms are derived from Equa-
tions 14 and 15, respectively. Because the HMM trellis is
equivalent to a directed tree (cf. Figure 5), the solution of S
can be efficiently obtained using the Viterbi algorithm [9].



Table 4: The collection of six wedding videos used in the experiments.
Clip A B C D E F

Duration 2215 (sec) 410 (sec) 4122 (sec) 3790 (sec) 1062 (sec) 1350 (sec)
Event # 17 8 35 23 15 14

Table 5: Gaussian distributions N(µ, σ2) of the event durations for all wedding events in the video collection.
Event ME GE BE CS OP WV RE BU MS WK AP ED OT

(a) from all event samples
µi 92.00 42.33 114.00 139.90 130.91 163.33 135.50 47.33 166.00 11.60 68.33 75.20 149.08
σi 38.11 36.25 67.73 104.62 182.28 61.71 13.20 6.66 62.60 1.14 6.66 13.48 67.13

(b) from half of the event samples with shorter durations
µ̃i 45.33 19.00 37.00 56.64 54.24 88.50 111.67 38.67 132.50 10.00 61.33 51.33 97.63
σ̃i 15.95 5.57 1.41 32.08 32.16 26.16 23.63 8.39 33.23 1.00 5.51 24.01 40.17

Table 6: Recognition results of the wedding events where each number is in unit of seconds.
Events ME GE BE CS OP WV RE BU MS WK AP ED OT RR(%)

ME 547 0 32 0 0 0 0 0 0 0 0 0 0 94.47
GE 25 99 18 0 0 0 0 0 0 0 0 0 0 69.72
BE 91 0 339 0 0 0 0 0 0 0 0 0 0 78.84
CS 0 0 0 2279 58 0 70 71 170 0 16 9 0 85.26
OP 4 0 0 75 3697 203 484 0 35 12 3 2 127 79.64
WV 0 0 0 0 0 773 22 0 0 0 0 0 0 97.23
RE 0 0 0 0 59 63 553 0 0 0 0 0 0 81.93
BU 0 0 0 23 6 0 0 156 0 0 0 0 0 84.32
MS 0 0 0 0 76 0 0 33 156 0 0 0 0 58.87
WK 0 0 0 11 0 3 0 0 0 76 0 0 0 84.44
AP 52 0 0 0 0 0 3 0 0 0 166 0 0 75.11
ED 0 0 0 0 0 0 0 0 0 0 0 430 0 100.00
OT 0 0 0 509 345 113 113 15 0 0 123 0 604 33.15

RP(%) 76.08 100.00 87.15 78.67 87.17 66.93 44.42 56.73 43.21 86.36 53.90 97.51 82.63

Therefore, in the input video V , the temporal extent of
a detected wedding event, or called an event segment, is
defined by collecting successive video units with the same
event labeling. Finally, a smoothing scheme is applied to
reduce possible labeling noises. Since, in general, a wedding
event lasts for at least tens of seconds, we remove the short
ones (less than 10 seconds in duration) by merging it into
its neighbors. If its both neighbors belong to different event
categories, it is merged into the left one; otherwise, all the
three events are merged into one event.

6. EXPERIMENTAL RESULTS
This section presents experimental results for the evalu-

ation of the proposed framework in wedding event recogni-
tion (Section 6.1) and wedding ceremony video segmentation
(Section 6.2). Table 4 summarizes the statistics of the videos
used in the experiments.

Currently, we have a total of six wedding video clips, each
of them contains a complete recording of a ceremony. Three
observers (none of the clip owners) collaboratively annotate
the event ground truth. Table 4 also reports durations and
numbers of the annotated events for all six videos. The
following experiments were performed using a leave-one-out
cross-validation strategy, in which models were trained from
five clips and tested on the remaining one, and the whole
training-testing procedure was iterated six times.

6.1 Event Recognition Analysis
Table 6 summarizes the event recognition results in unit

of seconds, presented in the form of confusion matrix [22],
where the leftmost column represents the actual event cat-
egories while the top-most row indicates the resultant ones
recognized by the HMM framework. The confusion matrix
is accumulated from results of all clips in the collection. The
recognition precision (RP) and the recognition recall (RR)
for each of the event categories are reported in Table 6. As
described in Section 1, since the actual boundaries between
wedding events are not always precise, the recognition result
of a video unit is claimed to be correct if it hits the ground
truth within a tolerant range. Instead of setting a universal
range value, we adopt a dynamic setting scheme based on
the recognized event categories because the event durations
vary greatly as shown in Table 5(a). For each event category,
we compute a truncated mean µ̃i of the event samples by dis-
carding half of the samples that are longer in duration (Ta-
ble 5(b)), and then the range value is set to min (0.2µ̃i, ξ),
where we set ξ = 10 so that the overlaps between events vary
according to event categories but do not exceed 10 seconds.
Here, we use a truncated mean but not the standard mean
since durations of the shorter samples are more consistent
and their average value would be more reliable, which can be
observed from that the truncated variance is much smaller
than the standard one as shown in Table 5.

Overall, as shown in Table 6, a large amount of the de-
tected wedding events reach over 70% in both RP and RR



Figure 6: Edit operations for transforming (a) a ref-
erence event string to (b) the comparing one.

values. Some of them even achieve the level of 85%, such as
WK and ED events. Several observations were made from
this table: 1) A few recognition errors are associated with CS

and OP events, especially the later one. This phenomenon is
usually unavoidable because a wedding event, such as OP or
MS event, is sometimes arranged to accompany with choirs
singing and the whole ceremony is generally hosted by wed-
ding officiants who would like to give some short presenta-
tions within a wedding event. They also cause severe degra-
dations in RP values for both RE and BU events. 2) The
confusion matrix is sparse and the recognition errors show
grouping effects. That is, the wedding events of a similar
group are prone to be mis-classified to each other, e.g., the
set of the entering events (ME, GE, BE) and the set of the
couple’s committing events (WV, RE). From Table 3, we
can find that the events of each event set correspond to the
ones that are more probable to occur in succession. Thus
the recognition errors partially come from the implicit event
boundaries. 3) The RR value of the OT event is relatively
low. This is due to the fact that OT event is inherently var-
ied in form. For example, it could be reading of poetry or
lighting of the unity candle. Compared with the other kinds
of wedding events, OT event is the most difficult one to be
modeled. Moreover, it severely influences the overall recog-
nition performance by spreading out the recognition errors
over various event categories.

6.2 Video Segmentation Analysis
In this section, we further evaluate the segmentation per-

formance of our approach. Since in practice the temporal
extent of a wedding event is perceived as a whole by users,
the segmentation results are compared at the event level but
not the second level. We follow a similar idea exploited in
the longest common substring problem [27]. That is, we
represent a wedding video as a symbol string where the al-
phabet consists of the event codes in Table 1. Note that the
symbol string is generated in unit of detected events, and
each symbol corresponds to an event segment of the wed-
ding video. Therefore, for each of the testing wedding clips,
the segmentation performance is measured by the number
of the required edit operations (substitution, insertion, and
deletion) for transforming the reference string correspond-
ing to the ground truth into the string corresponding to the
recognition result. Figure 6 shows an example of transform-
ing strings. The less the edit operations are needed, the
better the segmented videos match the ground truth.

Table 7 shows the statistics. We claim an event segment
as correct if it hits the ground truth in more than 80% of
its duration. The resultant segmentation precision (SP) and
the segmentation recall (SR) are then defined as follows:

SP =
Corrects

Corrects + Substitutions + Insertions
· 100%, (19)

Table 7: Segmentation results in which each number
is in unit of event segments (without duration-based
filtering).
Clip Corr. Sub. Ins. Del. SP(%) SR(%) SF(%)

A 16 1 12 0 55.17 94.12 69.57
B 5 1 0 2 83.33 62.50 71.43
C 28 1 23 6 53.85 80.00 64.37
D 22 1 19 0 52.38 95.65 67.69
E 12 0 6 3 66.67 80.00 72.73
F 12 1 10 2 52.17 85.71 64.86

Avg. 60.60 83.00 70.05

Table 8: Segmentation results in which each number
is in unit of event segments (with duration-based
filtering).
Clip Corr. Sub. Ins. Del. SP(%) SR(%) SF(%)

A 16 1 5 0 72.73 94.12 82.05
B 5 1 0 2 83.33 62.50 71.43
C 26 1 12 8 66.67 74.29 70.27
D 21 1 13 1 60.00 91.30 72.41
E 12 0 3 3 80.00 80.00 80.00
F 11 0 6 3 64.71 78.57 70.97

Avg. 71.24 80.13 75.42

SR =
Corrects

Corrects + Substitutions + Deletions
· 100%. (20)

In addition, the F-measure, SF = 2 ·SP ·SR/(SP + SR), is
provided as a metric for evaluating the integral performance.

From Table 7, we can see that SR values generally achieve
80% high, i.e., most of the event segments are correctly iden-
tified. A low value of Clip-B comes mostly from its small
event number in the ground truth as shown in Table 4. By
contrast, the overall SP values are relatively low, at the level
of 60%. Compared with the ground truth, a large amount of
redundant events are erroneously “inserted” in the segmen-
tation results by our approach. These are mainly caused
by the following two reasons. First, the erroneous events
are generated in a one-to-many pattern. A single event that
has been deleted from the ground truth usually turns into
a series of successive erroneous ones in the resultant event
sequence. For example, a deleted OT event would result in
a catenation of CS and OP events. Second, the erroneous
events are prone to exist around an event boundary of the
ground truth. The same phenomenon has been observed
from the recognition errors as reported in Section 6.1.

Since the erroneous events are “mutated” from parts of
the original event segments, in general, they have a shorter
duration as compared with the same kind of wedding events.
Therefore, we use a duration-based filtering scheme to iden-
tify and possibly correct the abnormal ones. Specifically,
for each of the event categories, we exploit the truncated
models (Section 6.1 and Table 5(b)) to determine a lower
bound of the reasonable event duration, i.e., Ωi = µ̃i −αiσ̃i,
where a rational scalar αi is empirically set within the range
of [1.5, 2]. If an event segment is recognized as the i-th
event category and its duration is less than Ωi, we merge
it into its left neighbor in our current implementation. Ta-
ble 8 summarizes the segmentation results after applying
the duration-based filtering. Compared with Table 7, the
number of inserted erroneous events is effectively reduced



and on average a 10% improvement is obtained for SP val-
ues. This improvement is accompanied by a slight decrease
in SR values because some correct events would be filtered
out at the same time.

Overall, as shown in Table 8, the integrated performance
of our system is satisfactory. It achieves the level of 70%
in terms of the SF metrics. Furthermore, with the assist
of the duration-based filter, the tendencies of both SP and
SR behaviors are much more balanced and consistent. The
statistical results may not be comprehensive but it is en-
couraging. It gives us support and confidence that, as long
as we capture well the content characteristics, we are able to
conduct high-level semantic analysis of home videos through
the use of generic and easily extracted audiovisual features.
That is also an advantage of the proposed framework to be
plausible for real applications.

7. CONCLUSIONS
In this paper, we proposed and realized a system for event-

based wedding analysis and segmentation. According to the
wedding customs, we developed a taxonomy for classifying
the wedding events, whereby three kinds of discriminative
high-level features are exploited for robust event modeling
and recognition. To the best of our knowledge, this work
is the first one to analyze and structure wedding videos on
the basis of semantic events. Therefore, it can help users to
access, organize, and retrieve his/her treasured contents in
an automatic and more efficient way. Many aspects of our
approach can be improved. First, it is possible to explore
more semantic features for event recognition. For example,
speaker recognition would be helpful for discriminating the
events of dense speech, such as WV and RE events. Next,
more extensive and complete evaluation of our system is a
must. Meanwhile, it is crucial to have a common evalua-
tion benchmark for wedding videos. In the future, we will
continue our investigation in these directions.
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