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Figure 1: A synthesis result of the proposed view sharing system. (a) The original view of the preceding vehicle. (b) The
original view of the subject vehicle with a large portion of the image blocked by the preceding vehicle. (c) The perspective of
the preceding vehicle is transferred to the corresponding view of the subject vehicle to “disocclude” the blocked area as if the
preceding vehicle becomes transparent.

Abstract
Visual obstruction caused by a preceding vehicle is one of the key factors threatening driving safety. One possible
solution is to share the first-person-view of the preceding vehicle to unveil the blocked field-of-view of the fol-
lowing vehicle. However, the geometric inconsistency caused by the camera-eye discrepancy renders view sharing
between different cars a very challenging task. In this paper, we present a first-person-perspective image rendering
algorithm to solve this problem. Firstly, we contour unobstructed view as the transferred region, then by iteratively
estimating local homography transformations and performing perspective-adaptive warping using the estimated
transformations, we are able to locally adjust the shape of the unobstructed view so that its perspective and bound-
ary could be matched to that of the occluded region. Thus, the composited view is seamless in both the perceived
perspective and photometric appearance, creating an impression as if the preceding vehicle is transparent. Our
system improves the driver’s visibility and thus relieves the burden on the driver, which in turn increases comfort.
We demonstrate the usability and stability of our system by performing its evaluation with several challenging
data sets collected from real-world driving scenarios.

Categories and Subject Descriptors (according to ACM CCS): I.4.9 [Image Processing and Computer Vision]:
Applications—

1. Introduction

Motivated by advent of cost effective and widely available
camcorders, nowadays it is common to see a car driver us-
ing a dashcam (dashboard camera), a portable camera that

is attached to the interior of the windshield, to record videos
capturing objects in front of the car when in motion. In the
unfortunate event that the car is involved in an accident, the
recorded videos can serve as evidence for insurance and le-
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Figure 2: Previously proposed See-Through System (STS)
presents to the driver a view with images taken from the pre-
ceding vehicle directly super-imposing over the image area
occupied by the preceding vehicle [GVF12]. However, the
drivers need to pay extra attention since the perceived con-
textual information from different views are highly inconsis-
tent.

gal purposes. Since the dashcam can be treated as a type
of first-person-view of the car, instead of using it only as
a passive record, in this paper we develop a solution to uti-
lize other vehicles’ views (i.e., taken from their dashcams) to
improve driver perception and increase the level of driving
safety.

Considering a vision-obstructing large vehicle in front of
ours while driving, critical decisions such as lane changing
or overtaking cannot be easily made because drivers can-
not be fully aware of the potential dangers behind the vi-
sual obstruction. Although it has been shown that the over-
taking vehicle can utilize direct vehicle-to-vehicle (V2V)
communications to access the video data recorded by the
front vehicle without significant delay [GVF12], rendering
the video streaming in the perspective of preceding vehicle
requires the overtaking drivers to continuously pay attention
to two disjointed views in different perspectives. Such frag-
mented views and inconsistent perspectives cause degrada-
tion in spatial cognition and place extra burden on the over-
taking driver. For example, in Figure 2, the visual discontinu-
ities around the boundaries of the darkened rear windscreen
are not only distracting but could also have a negative impact
on driving safety.

Given two synchronized video sequences Ir and It , which
are captured by a preceding vehicle (r) and the subject vehi-
cle (t), respectively. The field-of-view in It are partially ob-
structed by the preceding vehicle. Our goal is thus to gener-
ate an image sequence Ît , where the occluded regions in each
frame of It are replaced by the visible visual elements ap-
pearing in the corresponding frame of Ir with the perspective
of the subject vehicle. To produce Ît , a straightforward solu-
tion is to perform a pairwise image matching and stitching
between two corresponding frames, as suggested by [BL07].
However, the performance of such process is affected by the
following difficulties. Firstly, if the subject vehicle followed
the preceding vehicle with a short distance, the occluded re-

gions severely downgrade the matching quality. Secondly,
the inconsistent parallax from scene depth and different cam-
era locations violate the assumptions made in typical stitch-
ing approaches [SS97, BL07]. Finally but not lastly, apply-
ing the methods designed for images to process videos may
lead to temporal artifacts, e.g., ghost effects of different mis-
aligned objects in the video.

To address the above limitations and challenges, we pro-
pose a view-sharing system to integrate spatial information
across two temporally aligned sequences. The proposed sys-
tem performs both shape adjustment and color blending to
generate the composited video such that the viewing per-
spectives and color appearances among different views are
seamlessly fused and the temporal coherence can be also
achieved. To this end, we propose a video-based perspective
adaptation technique consisting of two main steps: local ho-
mography estimation and perspective-aware warping. With
our approach, the unobstructed view and perspective of the
preceding vehicle can be gradually transformed and adapted
to the matched occluded region in the subject video. Specif-
ically, our approach makes use of the coherence of scene
dynamics to guide the local warping across the long video
sequences. We also allow local homographies to be accumu-
lated to accelerate incremental homography propagation. In
addition, the parallax problem is also handled properly by
restricting image stitching within a local region.

In summary, the contributions of this work are stated as
follows. Firstly, we propose a view-sharing system that in-
tegrates spatial information across two temporally synchro-
nized dashcams. The generated video sequence enables the
subject driver to monitor surroundings ahead of the ob-
structed vehicle in accordance with current visual percep-
tion, thus providing complete situational awareness that fa-
cilitates decision making and responses to driving events.
Secondly, we exploit scene dynamics in a video and propose
a spatially varying warping technique for locally adapting
the visibility as well as the perspective of the preceding ve-
hicle to the occluded region in the target location. It allows
the subject driver to exceed the limited spatial visibility in
a perspective-consistent way. Finally, we show that our sys-
tem is of high practical value by evaluating it in different
scenarios, including straight-lane regions on highways and
curved-lane regions in urban areas.

2. Related Work

The See-Through System. Utilizing direct V2V commu-
nications and camera sensors in modern vehicles, Ferreira
et al. [GVF12] developed the See-Through System (STS) to
mitigate the driving difficulty in perceiving incoming traf-
fic behind a vision-obstructing vehicle. The system recog-
nizes the back of the preceding vehicle, and replaces it with
a video feed from the dashcam mounted on the preceding
vehicle. Despite the fact that V2V communications ensures
minimal delay in obtaining the images of the preceding ve-
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hicle [OMGF∗10], the perspectives of the reproduced video
were not adjusted in accordance with current visual per-
ception. In this work, we propose a video-based perspec-
tive warping technique to adjust the perspective structure
recorded by the preceding vehicle to adapt to the perspec-
tive of the temporally corresponding frame captured by the
subject vehicle.

Image stitching. The goal of image stitching is to seam-
lessly integrate multiple images into a single mosaic. Con-
ventional methods [SS97, BL07] assume that the images to
be stitched together are associated with a global homogra-
phy transformation, and thus work well with specific types
of images, such as those of distant scenes or those taken
from a camera rotated about its center of projection. How-
ever, global homograhy alone is not flexible enough to model
all types of scenes and camera motions. Therefore, Gao
et al. [GKB11] proposed a dual-homography model to ad-
dress the insufficiency of global homography model. Still,
this model cannot fully represent the diverse scene varia-
tions of real-world images. Recently, [LLM∗11, ZCBS13]
have proposed to use spatially-varying warping functions
to account for parallax. Some other related work [AZP∗05,
DPR05] aimed to stitch images into panoramas from a video
sequence. Although these methods have achieved great per-
formance for stitching overlapping and consecutive images
from a rotating camera, mosaicking views from translated
cameras along a vehicle path remains a very challenging task
due to the motion parallax in scene depth.

Motion estimation. Motion estimation techniques in video
can be roughly classified into two categories: direct meth-
ods and feature-based methods. The former [LK81] pro-
duces dense correspondence, but it is not robust when ob-
jects present in one image but not in the other. The latter,
such as [TCGP09], extracts visual features and tracks them
across multiple frames. The benefit of this category is that it
provides robust tracking when there is significant image mo-
tion. In addition, motion estimation by sparse feature track-
ing is useful for a variety of applications, i.e., video stabi-
lization [LCCO09], video resizing [WFS∗09] or video in-
painting [GKT∗12]. Different from their methods, we do
not assume a restricted camera model as in video resizing or
inpainting. Instead, we aim at perspective adaptation, where
feature trajectories are exploited to compute spatially vary-
ing warping functions to guide local warping.

Video alignment. The primary goal of sequence-to-
sequence alignment is to establish both spatial and temporal
correspondences of the same dynamic scene. Although this
problem has been extensively studied in the literature [CI02,
ST04, EB13], they assume that there is sufficiently large
overlap between spatially corresponding frames. Under such
assumption, the occlusion problem is thus minimized or can
be ignored. In this case, video alignment is only suitable for
very similar scenes. In our setting, we aim to register two

related frames with substantially different appearance due
to occlusion or change of perspective, presenting new chal-
lenges to current video alignment approaches.

3. Overview

Figure 3 depicts the overall algorithmic flow of our video
perspective warping technique. The input to our system con-
sists of a target sequence and a reference sequence, which
are assumed to be temporally synchronized. The system first
estimates the vision-obstruction regions (Figure 3(a)) in the
target sequence (Section 4.1). To generate the corresponding
contour of the visible visual region captured by the refer-
ence image, we track the robust feature trajectories through
the spatial-temporal volume in the reference sequence, as
described in Section 4.2. The area inside the contour (Fig-
ure 3(b)) is then transformed across multiple frames by the
proposed perspective adaptation algorithm (Figure 3(c)) and
stitched to the matched occluded region in the target frame
(Figure 3(d)). To avoid perceptional discrepancy and mis-
matched boundaries between the transformed region and the
target image, our perspective adaptation algorithm (Section
4.3) adjusts the shape of the transformed region so that the
viewpoints are continuous across the boundaries of the trans-
formed region and the target image. Specifically, spatially-
varying warping and local stitching process are performed
in the area inside the contour through the video volume until
the transformed region adapts to the viewpoint of the target
image. Figure 3(e) shows the final synthesized image which
is seamlessly composited from the reference and the target
images and achieves consistent visual appearance along the
boundaries and perspective projection.

3.1. Problem Formulation

Considering two moving vehicles, namely the subject vehi-
cle and the preceding vehicle. Denote the target and the ref-
erence sequences captured by the subject vehicle and pre-
ceding vehicle as It(x) and Ir(x̂), respectively. For each
frame in It(x), the captured scene is partially occluded by the
preceding vehicle. Let x = [x,y,m] and x̂ = [x̂, ŷ,n] denote
the spatial-temporal coordinates of It , Ir with m = 1, ...,M
and n = 1, ...,N indicating their frame indices, respectively.
For simplicity, we will refer to the m-th target and n-th ref-
erence frame as It

m and Ir
n in the following discussions. Fur-

thermore, we assume that the temporal mapping is expressed
through a discrete-time signal mapping function T : N→ R,
such that (m,T (m)) is an assignment of an target frame to
a reference frame. For each input frame It

m, the temporal
mapping (m,T (m)) is assumed to be determinable in real-
time via a wireless vehicular communication system. For
each frame It

m in the target sequence, our goal is to replace
the vision-obstruction region with the visual elements in the
temporally corresponding frame Ir

T (m) according to the per-
spective projection of It

m. Specifically, it will create an im-
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Figure 3: An overview of the proposed method. Given the target and reference sequences, the occluded region (a) in the target
image is estimated and our system automatically finds the corresponding contour (b) in the reference image. To transform the
area inside the contour in the reference image to match the occluded region in the target image, the perspective of the region
to be transformed are adapted to fit that of the location in the target image by performing (c) perspective adaptation through
reference video volume and (d) a stitching process between the two image frames. In the stage of perspective adaptation, a
novel view I′ is synthesized by performing local homography estimation and perspective-aware warping. Finally, we stitch the
synthesized view and target image where the warped region is seamlessly blended into the target image to make an impression
that the vehicle is transparent (e). Note that the “see-through” effect does not cover the entire occluded region such that the
viewers remain consciously aware of the existence of the preceding vehicle, thus improving driving safety.

pression as if the preceding vehicle becomes transparent, as
shown in Fig. 1.

4. Method

4.1. Occlusion detection

In the target sequence, the occluded region corresponds to
the preceding vehicle’s positions. To contour such region
Ω

t
m in each frame It

m, the robust object tracking method pro-
posed by Zoung et al. [ZLY12] is adopted to obtain an accu-
rate vehicle position. The tracker is initialized by a vehicle
object detector, then the states of the target position is esti-
mated and updated using a collaborative model. The method
outperforms many other object tracking methods [WLY13]
when the scale variation is large, e.g., the preceding vehi-
cle has sudden movements or the relative speed between the
two vehicles changes irregularly, which are both of common
situations when cars are in motion.

4.2. Contour generation

After the occluded position Ω
t
m (Figure 4(a)) in the target

image It
m is estimated, the goal of this stage is to gener-

ate the corresponding contour Ω
r
T (m) in the reference im-

age Ir
T (m) that contains the visual elements invisible in the

target image. Directly matching Ir
T (m) and It

m is infeasible
since Ω

t
m is not visible in Ir

T (m). Therefore, we propose to
perform forward tracking in the reference video volume to
locate the position of such a region. For each target frame It

m,
GPS information is firstly utilized to find the spatially clos-
est frame Ir

T (m)−k (Figure 4(b)) in reference sequence, where
k is an integer index offset. GPS alignment guarantees that
the corresponding inter-sequence frame pair (It

m, I
r
T (m)−k)

is taken approximately at the same geographical locations
within the range of about 2.5∼ 5 meters. Next, we perform
the traditional image matching technique on the image pair
(It

m, I
r
T (m)−k) to estimate a global transformation between

the two images. Since they are captured from similar view-
points, a global transformation model is sufficient to roughly
model their transformation. Then, we use the global transfor-
mation to warp Ω

t
m to Ir

T (m)−k as the initial contour Ω
r
T (m)−k

for the following forward tracking process. To find the es-
timated contour Ω

r
T (m) in Ir

T (m), starting from Ir
T (m)−k, we

detect features within Ω
r
T (m)−k and recover their trajectories

by making a forward sweep through the reference video vol-
ume. Figure 4(c) shows the result of the estimated contour
Ω

r
T (m). As will be explained in Section 4.3, the visual ele-

ments in the estimated region Ω
r
T (m) is then gradually trans-

formed and aligned with the input image.
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(a) (b) (c)

Figure 4: (a) Target image It
m and the occluded region Ω

t
m (indicated by the red dotted line). (b) The spatially corresponding

frame Ir
T (m)−k of It

m obtained by utilizing the GPS information. The corresponding position of Ω
t
m is estimated by a global

transformation (green dotted line) (c) The generated contour Ω
r
T (m) in Ir

T (m) by our method.

4.3. Perspective adaptation

Given the target image It
m with the occluded region Ω

t
m and

the reference image Ir
T (m) with the contour mask Ω

r
T (m),

specifying the region to be transformed and to fill into the
occluded region in It

m, the goal of perspective adaptation is to
synthesize a novel view which adapts to both the shape and
the perspective of the target image while closely approximat-
ing the original local appearance of the transformed region.

An important characteristic of perspective projection is
foreshortening: objects become smaller as their distances
from the observer increase [LSC∗12]. In other words, the
projected size of an object is highly dependent on its depth.
Typically, for a moving camera, the depth of the captured
scene changes gradually. An important observation is that
the change of appearance between consecutive frames also
reveals how the perspective changes. When there is a sig-
nificant discrepancy between the perspectives of the target
and the reference images, the 2D shape of the transformed
region must be adjusted according to the adapted motion to
match such changes or discrepancies. To this end, we pro-
pose the following perspective-adaptation technique to ac-
complish this task.

4.3.1. Perspective-aware warping and stitching

Rendering a consistent perspective view can be achieved by
estimating the transformation function between the refer-
ence and the target images. Specifically, given the estimated
homography H ∈ R3×3, a pixel at position x̂ = [x̂, ŷ]T in the
reference image Ir

T (m) is warped to the position x = [x,y]T in
the target image It

m by

x′ = Hx̂′, (1)

where x′ is x in homogeneous coordinates. In inhomoge-
neous coordinates,

x =
hT

1 [x̂ ŷ 1]T

hT
3 [x̂ ŷ 1]T

and y =
hT

2 [x̂ ŷ 1]T

hT
3 [x̂ ŷ 1]T

, (2)

where hT
j is the j-th row of H. Eq. 2 can be rewritten as:

03×1 =

 01×3 −x̂′T yx̂′T

x̂′T 01×3 −xx̂′T

−yx̂′T xx̂′T 01×3

h, h =

h1
h2
h3

 . (3)

Let ai ∈ R2×9 be the first two rows of Eq. 3 computed for
the i-th correspondence pair {xi, x̂i}. Direct Linear Transfor-
mation (DLT) is one of the techniques to estimate the nine
elements of H from a set of correspondences {xi, x̂i}N

i=1 by

h = argmin
h

N

∑
i=1
‖aih‖2 = argmin

h
‖Ah‖2, (4)

where A ∈ R2N×9 is obtained by stacking vertically ai for
all i. The solution is the least significant right singular vector
of A. Although a single 2D global transformation performs
well for planar scenes or rotational camera motions, but
for complex scenes, i.e., highly non-planar scene that is
captured by different cameras in vehicle paths, as in our
situation, the assumptions on motion properties and selec-
tion of dominant motions often lead to inaccurate results
(Figure 5(c)). Moreover, due to the presence of occlusion,
accurately aligning the input image and the reference image
is much more challenging.

To tackle this obstacle, we propose a two-stage perspective-
aware warping technique that utilizes the coherence of
video dynamics to guide the perspective adaptation. In
the first stage, we estimate the spatially varying warping
functions between the consecutive frames in the reference
sequence that describe how the transformed region (the area
inside the contour Ω

r
T (m)) should be deformed so that its

size and shape matches the perspective of the target image.
A novel view I′T (m)−k that integrates the visual element
of transformed region while approximating the viewpoint
of target image is synthesized by proceeding the process
consecutively until the transformed region is gradually
warped to Ir

T (m)−k, which represents the spatially closest
frame of the target frame It

m in the reference sequence. In
the second stage, we align the synthesized image I′T (m)−k

c© 2014 The Author(s)
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and the target image It
m together, then the final composited

image is recovered by blending the elements in the aligned
image and the target image in the occluded region.

Feature tracking. The transformation model that re-
lates the two images is typically estimated from noisy
correspondences of local invariant features. Since consec-
utive video frames are usually very similar, we adopt the
sparse optical flow method [ST94] to match corresponding
feature points between two neighboring frames. The sparse
optical flow method estimates the motion with a selected
number of pixels,and thus it provides more robustness
against noise than that of optical flow algorithms while
avoiding the high computational cost due to frame-to-
frame matching by using robust feature descriptors, i.e.,
SIFT [Low04]. Specifically, we compute interest points
(Shi-Tomasi features) in the video frame and generate
matched points for these interest points by tracking them
across multiple frames. The tracking process produces fairly
accurate matching results.

Spatial varying warping function. Let {xi, x̃i}N
i=1 be

the collected correspondence set across consecutive frames
Ir
t and Ir

t−1 in the reference sequence, where x = [x,y],
x̃ = [x̃, ỹ], and N is the number of correspondence pairs. To
align two frames, a pixel at position x∗ in frame Ir

t is warped
to the position x̃∗ in frame Ir

t−1 by a location dependent
homography model [ZCBS13]:

x̃∗ = H∗x∗, (5)

where H∗ is estimated from a weighted minimization prob-
lem:

h∗ = argmin
h
‖

N

∑
i=1

ω
i
∗aih‖2, (6)

subject to ‖h‖ = 1 and the weights {ωi
∗}N

i=1 are calculated
from a Gaussian-like distribution:

ω
i
∗ = exp(−‖x∗−xi‖2

σ2 ), (7)

where σ
2 is the variance. Eq. 7 gives higher weight to data

points closer to x∗. The problem can be written in the matrix
form:

h∗ = argmin
h
‖W∗Ah‖2, (8)

where the W∗ ∈ R2N×2N can be further described as:

W∗ = diag([ω1
∗ ω

1
∗ ... ω

N
∗ω

N
∗ ]). (9)

diag() constructs a diagonal matrix with a given vector.
Eq. 8 corresponds to a weighted Singular Value Decom-
position (WSVD) problem, and the solution is the least
significant right singular vector of W∗A.

Avoiding parallax using local stitch. As mentioned
in [ZL14], the images with significant parallax often cannot

(a) reference image (b) target image

(c) Global homography (d) MDLT [ZCBS13]

Figure 5: Aligned images. (a) reference image captured by
the preceding vehicle. (b) target image captured by the sub-
ject vehicle. (a) and (b) are input pairs. (c) the synthesized
result stitched with global homography after final stitching.
(d) the synthesized result stitched with MDLT method after
final stitching.

be aligned well over the whole overlapping region without
suffering artifects like folding-over. To handle parallax, we
also perform local stitch between Ir

t and Ir
t−1. Specifically,

after the local homographies between Ir
t and Ir

t−1 are
estimated, only the area inside the transformed contour Ω

r
t

is warped to Ir
t−1, then a novel view I′t−1 is composited,

which corresponds to the perspective observed in Ir
t−1.

By iteratively applying local homography estimation and
perspective-aware warping between I′t and Ir

t−1, the content
and the perspective inside the contour Ω

r
T (m) is gradually

adjusted. Finally, a novel frame I′T (m)−k is synthesized.

4.3.2. Final stitching

Owing to the first warping stage discussed in Section 4.3.1,
the perspective of I′T (m)−k is adapted to Ir

T (m)−k, which is
the spatially closest frame of the subject frame It

m in ref-
erence video sequence. We assume that the perspectives of
two frames should be similar if the distance between their
spatial coordinates is small enough. Finally, we stitch It

m and
I′T (m)−k together to get the final panoramic image Î. In or-
der to make the preceding vehicle transparent, we only cut
the part that corresponds to the occlusion mask Ω

t from the
stitched view and blend it with It

m to get the final result Î.
We conclude this section by summarizing our approach in
Algorithm 1.

5. Results and Discussions

We evaluate the performance of our system using video clips
collected in real driving scenarios. The videos were designed
to be captured in three different road conditions and traffic
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Algorithm 1 Algorithm

1: Input: target sequence It and reference sequence Ir

2: for each It
m,m = 1 ∼M do

3: Ω
t
m← find the occluded region in It

m (Sec. 4.1)
4: Ir

T (m)−k ← find the spatially-closest frame in refer-
ence sequence with GPS information

5: Ω
r
T (m) ← estimate the corresponding contour in

It
T (m) (Sec. 4.2)

6: I′T (m)−k← synthesize the novel view by perspective-
aware warping and stitching (Sec. 4.3.1)

7: Îm← obtain the final result by stitching I′T (m)−k and
It
m (Sec. 4.3.2)

8: end for
9: Output: synthesized sequence Î

flows: (i) on the highway, (ii) on the city road and (iii) on the
mountain road. The dashcams on the vehicle were set up in
the middle of the windshields with timestamps information.
For capturing these videos, the driver on the subject vehicle
followed in the path of the bus ahead, which corresponded
to the lead vehicle through our discussion. In addition, the
geographical information provided by GPS receivers on the
vehicles was used to spatially align two videos. Beside, we
also recorded an additional video with only one dashcam. In
the following sections, we first demo the effectiveness of the
proposed perspective adaptation approach in 5.1. Then, we
compare our method with two approaches: (i) global align-
ment using RANSAC and (ii) local alignment with Moving
Direct Linear Transformation and demonstrate several result
using the proposed method in Section 5.2.

5.1. Verification of perspective adaptation

In this experiment, we aim to use a single video sequence to
validate the effectiveness of the proposed perspective adap-
tation approach. In Figure 6(a), by gradually warping the
area specified by the estimated contour at time T (m) (ob-
tained by forward propagation as described in Section 4.2),
its perspective is adjusted to fit to that of time T (m)− k and
the image content can be seamlessly composited into the
corresponding mask. The synthesis result is shown in Fig-
ure 6(c) and Figure 6(b) can be regarded as the ground truth
(the frame captured at time T (m)−k). It can be seen that we
alter the shape of transferred region according to scene depth
change to model the perspective effect.

5.2. Qualitative comparisons

We compare our method against the baseline warping
method (global homography via DLT in inliers) and the local
homography method (Moving-DLT) [ZCBS13] with three
alignment instances. Figure 7(a) and (b) show three pairs of
input images with a significant amount of parallax and oc-
clusion, where the input are the reference and target images

captured by the dashcams on the lead vehicle and the subject
vehicle, respectively. In each case, large viewpoint change,
different lighting conditions and the presence of occlusion
make the alignment task very challenging. Figure 7(c)∼(e)
show the results generated by each method.

For the baseline method, we detect and match SIFT key-
points in the input pair, then run RANSAC to remove out-
liers. We estimate a global homography via Direct Linear
Transformation (DLT) on inliers to align two images. The
result of baseline method caused unavoidable misalignment
and ghost effect, which can been seen in Figure 7(c). It sug-
gests that using a single homography alone is not sufficient
to model the transformations between two images because
a scene is usually composed by more than two projection
planes. Besides, given input images with considerably dif-
ferent perspectives, it’s very difficult to establish enough cor-
rect matches thus leading to incorrect homography estima-
tion. While Moving-DLT with spatially varying homogra-
phies is able to produce good results, it tries to align two
images over the whole overlapping region. Thereby, the es-
timated transformations are easily dominated by the noisy
matches. As a consequence, the distortion is very large and
ghosting still occurs in the region Figure 7(d) (the stairs next
to the wall). In contrast, by using the coherence property
in the video sequence, features are easily to be matched, it
facilitate the a good in first warping stage. In the stage of
second warping stage, the perspective-adapting frame which
possesses similar viewpoint of the subject vehicle is trans-
formed. Thereby, it’s easier to find matches between close
perspective compared with direct warping methods. There-
fore, our method can estimate local homography more pre-
cisely, thus achieves more plausible results as shown in Fig-
ure 7(e).

Limitations One limitation of the proposed method is that
we have not considered inter-frame motion. Motion parallax
must be carefully dealt with since it will cause the estima-
tion of local homographies to diverge and compromise the
spatial smoothness of the overall warping results. For future
work, we would like to identify the object and camera mo-
tions since the MDLT and parallax-tolerant methods were
designed for static scenes. To achieve this, we will investi-
gate the use of advanced vehicle detection methods and other
prior knowledge, e.g. the relative speed between different ve-
hicles, to separate the moving objects from the static scene.
The performance of our work is also highly dependent on the
quality of feature detection and tracking. Its performance de-
grades in large textureless regions, such as ground and sky,
since there are too few reliable feature points available to
guide image warping and stitching. To overcome this limita-
tion, we consider to detect planar surfaces in the scene such
that a single homography can be more robustly estimated to
guide image warping in these challenging scenarios.
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(a) (b) (c)

Figure 6: (a) is the frame Ir
T (m) in the reference sequence. (b) is the frame Ir

T (m)−k in the reference sequence. (In this case,
we set k = 30). (c) is a novel image with the region inside a mask (green dotted line) synthesized by the proposed perspective
adaptation method. One can see that the perspectives of the two different frames are very visually similar inside the mask.

6. Conclusion

In this paper, we consider the problem of aligning two videos
that are captured simultaneously by independently moving
cameras following similar trajectories. Aligning two tem-
poral synchronized video sequences encounters great chal-
lenges due to large viewpoint changes and heavy occlu-
sion. Therefore, in this paper we propose a two-stage warp-
ing technique that gradually adapts the perspective from
one video to the other, rather than directly aligning two
videos with large difference in viewpoint. It not only reduces
the difficulties of perspective transferring between multiple
views, but also increases the visibility of the driver and en-
hances safety and comfort in driving scenarios.
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Figure 7: Qualitative comparisons. Challenging frames of reference sequence (a) and target sequence (b) are shown. (c)
Aligned image using a global homography method. (d) Aligned image using Moving-DLT method [ZCBS13]. (e) Aligned image
with our method.
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